Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 1, Number 1, December 2013
Article Number 3
Number of page(s) 50
DOI https://doi.org/10.1140/epjnbp3
Published online 09 May 2013
  1. Finney DJ: Probit Analysis. London: Cambridge University Press; 1971. [Google Scholar]
  2. Ulfendahl M: Mechanical responses of the mammalian cochlea.Prog Neurobiol 1997, 53:331–380. [Google Scholar]
  3. Robles L, Ruggero MA: Mechanics of the mammalian cochlea.Physiol Rev 2001, 81:1305–1352. [Google Scholar]
  4. Schairer KS, Nizami L, Reimer JF, Jesteadt W: Effects of peripheral nonlinearity on psychometric functions for forward-masked tones.J Acoust Soc Am 2003, 113:1560–1573. [Google Scholar]
  5. Schairer KS, Messersmith J, Jesteadt W: Use of psychometric-function slopes for forward-masked tones to investigate cochlear nonlinearity.J Acoust Soc Am 2008, 124:2196–2215. [Google Scholar]
  6. Plack CJ, Oxenham AJ: Basilar-membrane nonlinearity and the growth of forward masking.J Acoust Soc Am 1998, 103:1598–1608. [Google Scholar]
  7. Yates GK, Winter IM, Robertson D: Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range.Hear Res 1990, 45:203–219. [Google Scholar]
  8. Nizami L, Schneider BA: The fine structure of the recovering auditory detection threshold.J Acoust Soc Am 1999, 106:1187–1190. [Google Scholar]
  9. Nizami L: On auditory dynamic range.PhD thesis. University of Toronto: Psychology Department; 1999. [Google Scholar]
  10. Nizami L, et al.: The human cochlear mechanical nonlinearity inferred through the Schairer et al. (2003) model. In Fechner Day 2012: proceedings of the 28th annual meeting of the International Society for Psychophysics, October 2012. Edited by: Leth-Steensen C, Schoenherr JR. Ottawa, Ontario, Canada: International Society for Psychophysics; 2012:12–17. [Google Scholar]
  11. Gabor D: Theory of communication.J Inst Elec Eng London 1946, 93:429–457. [Google Scholar]
  12. Schneider BA, Pichora-Fuller MK, Kowalchuk D, Lamb M: Gap detection and the precedence effect in young and old adults.J Acoust Soc Am 1994, 95:980–991. [Google Scholar]
  13. Nizami L: Threshold vs. duration for Gaussian-shaped tone-pips of one to four periods duration.Percept Motor Skills 2004, 99:821–836. [Google Scholar]
  14. Nizami L: Afferent response parameters derived from postmasker probe- detection thresholds: ‘the decay of sensation’ revisited.Hear Res 2003, 175:14–35. [Google Scholar]
  15. Rhode WS, Recio A: Study of mechanical motions in the basal region of the chinchilla cochlea.J Acoust Soc Am 2000, 107:3317–3332. [Google Scholar]
  16. Nuttall AL, Dolan DF: Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig.J Acoust Soc Am 1996, 99:1556–1565. [Google Scholar]
  17. Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L: Basilar-membrane responses to tones at the base of the chinchilla cochlea.J Acoust Soc Am 1997, 101:2151–2163. [Google Scholar]
  18. Dallos P, Popper AN, Fay RR: The Cochlea. New York: Springer-Verlag; 1996. [Google Scholar]
  19. Nizami L, Reimer JF, Jesteadt W: The intensity-difference limen for Gaussian-enveloped stimuli as a function of level: tones and broadband noise.J Acoust Soc Am 2001, 110:2505–2515. [Google Scholar]
  20. Nizami L: Estimating auditory neuronal dynamic range using a fitted function.Hear Res 2002, 167:13–27. [Google Scholar]
  21. Sachs MB, Abbas PJ: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli.J Acoust Soc Am 1974, 56:1835–1847. [Google Scholar]
  22. Palmer AR, Evans EF: Cochlear fibre rate-intensity functions: no evidence for basilar membrane nonlinearities.Hear Res 1980, 2:319–326. [Google Scholar]
  23. Dai H: On measuring psychometric functions: a comparison of the constant- stimulus and adaptive up-down methods.J Acoust Soc Am 1995, 98:3135–3139. [Google Scholar]
  24. Green DM, Swets JA: Signal Detection Theory and Psychophysics. Los Altos, California, USA: Peninsula Publishing; 1988. [Google Scholar]
  25. Nizami L, Reimer JF, Jesteadt W: The mid-level hump at 2 kHz.J Acoust Soc Am 2002, 112:642–653. [Google Scholar]
  26. Nizami L: The intensity-difference limen for 6.5 kHz: an even more severe departure from Weber’s law.Percept Psychophys 2006, 68:1107–1112. [Google Scholar]
  27. Zwislocki J, Maire F, Feldman AS, Rubin H: On the effect of practice and motivation on the threshold of audibility.J Acoust Soc Am 1958, 30:254–262. [Google Scholar]
  28. Lukaszewski JS, Elliott DN: Auditory threshold as a function of forced-choice technique, feedback, and motivation.J Acoust Soc Am 1962, 34:223–228. [Google Scholar]
  29. Loeb M, Dickson C: Factors influencing the practice effect for auditory thresholds.J Acoust Soc Am 1961, 33:917–921. [Google Scholar]
  30. Whitmore JK, Ermey HL, Williams PI: Some results bearing on the stability of psychometric data.J Acoust Soc Am 1968, 44:370. [Google Scholar]
  31. Weber DL, Moore BCJ: Forward masking by sinusoidal and noise maskers.J Acoust Soc Am 1981, 69:1402–1409. [Google Scholar]
  32. Zwicker E: Dependence of post-masking on masker duration and its relation to temporal effects in loudness.J Acoust Soc Am 1984, 75:219–223. [Google Scholar]
  33. Garcia-Perez MA: A cautionary note on the use of the adaptive up-down method.J Acoust Soc Am 2011, 130:2098–2107. [Google Scholar]
  34. Nizami L: Dynamic range relations for auditory primary afferents.Hear Res 2005, 208:26–46. [Google Scholar]
  35. Kohlrausch A, Puschel D, Alphei H: Temporal resolution and modulation analysis in models of the auditory system. In Speech research 10: the auditory processing of speech Edited by: Schouten MEH. 1992, 85–98. [Google Scholar]
  36. Vaux DL: Know when your numbers are significant.Nature 2012, 492:180–181. [Google Scholar]
  37. Hartmann WH: Signals, Sound, and Sensation. New York: Springer-Verlag; 1998. [Google Scholar]
  38. McGee JD: Phase-locking as a frequency and intensity coding mechanism in auditory nerve fibers. MS thesis: Creighton University; 1983. [Google Scholar]
  39. Liberman MC: Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal.Hear Res 1988, 34:179–192. [Google Scholar]
  40. Palmer AR, Evans EF: On the peripheral coding of the level of individual frequency components of complex sounds at high sound levels. In Hearing mechanisms and speech. Edited by: Creutzfeld O, Scheich H, Schreiner C. Heidelberg: Springer-Verlag; 1979:19–26. [Google Scholar]