Issue
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Advances in Neural Population Models and Their Networks
Article Number 4
Number of page(s) 17
DOI https://doi.org/10.1140/epjnbp17
Published online 09 May 2014
  1. Wilson H, Cowan J: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Kybernetik 1973, 13:55–80. [Google Scholar]
  2. Amari SI: Dynamics of pattern formation in lateral-inhibition type neural fields.Biol Cybern 1977, 27:77–87. [Google Scholar]
  3. Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G: Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex.J Neurosci 1999,19(20):9016–9028. [http://www.jneurosci.org/content/19/20/9016.abstract] [Google Scholar]
  4. Bressloff PC: Spatiotemporal dynamics of continuum neural fields.J Phys A 2012,45(3):033001. [http://stacks.iop.org/1751-8121/45/i=3/a=033001] [Google Scholar]
  5. Coombes S: Large-scale neural dynamics: simple and complex.NeuroImage 2010,52(3):731–739. [http://www.sciencedirect.com/science/article/B6WNP-4Y70C6H-3/2/334a01e2662e998a0fdd3e1bbe9087d7] [Google Scholar]
  6. Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR: Modeling electrocortical activity through improved local approximations of integral neural field equations.Phys Rev E 2007,76(5):051901. [Google Scholar]
  7. Coombes S, Lord G, Owen M: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions.Physica D 2003, 178:219–241. [Google Scholar]
  8. Folias S, Bressloff P: Stimulus-locked waves and breathers in an excitatory neural network.SIAM J Appl Math 2005, 65:2067–2092. [Google Scholar]
  9. Hutt A, Rougier N: Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields.Phys Rev E 2010, 82:R055701. [Google Scholar]
  10. Coombes S, Owen M: Bumps, breathers, and waves in a neural network with spike frequency adaptation.Phys Rev Lett 2005, 94:148102. [Google Scholar]
  11. Ermentrout GB, McLeod JB: Existence and uniqueness of travelling waves for a neural network.Proc R Soc E 1993, 123A:461–478. [Google Scholar]
  12. Jirsa VK, Haken H: Field theory of electromagnetic brain activity.Phys Rev Lett 1996,77(5):960–963. [Google Scholar]
  13. Hutt A: Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds.Phys Rev E 2007, 75:026214. [Google Scholar]
  14. Bressloff PC: Traveling fronts and wave propagation failure in an inhomogeneous neural network.Physica D 2001, 155:83–100. [Google Scholar]
  15. Jirsa VK, Kelso JAS: Spatiotemporal pattern formation in neural systems with heterogeneous connection toplogies.Phys Rev E 2000,62(6):8462–8465. [Google Scholar]
  16. Kilpatrick ZP, Folias SE, Bressloff PC: Traveling pulses and wave propagation failure in inhomogeneous neural media.SIAM J Appl Dynanmical Syst 2008, 7:161–185. [Google Scholar]
  17. Schmidt H, Hutt A, Schimansky-Geier L: Wave fronts in inhomogeneous neural field models.Physica D 2009,238(14):1101–1112. [Google Scholar]
  18. Potthast R, beim Graben P: Inverse problems in neural field theory.SIAM J Appl Dynamical Syst 2009,8(4):1405–1433. [Google Scholar]
  19. Potthast R, beim Graben P: Existence and properties of solutions for neural field equations.Math Methods Appl Sci 2010,33(8):935–949. [Google Scholar]
  20. Coombes S, Laing C, Schmidt H, Svanstedt N, Wyller J: Waves in random neural media.Discrete Contin Dyn Syst A 2012, 32:2951–2970. [Google Scholar]
  21. Coombes S, Laing C: Pulsating fronts in periodically modulated neural field models.Phys Rev E 2011, 83:011912. [Google Scholar]
  22. Brackley C, Turner M: Persistent fluctuations of activity in undriven continuum neural field models with power-law connections.Phys Rev E 2009, 79:011918. [Google Scholar]
  23. beim Graben P, Potthast R: Inverse problems in dynamic cognitive modeling.Chaos 2009, 19:015103. [Google Scholar]
  24. Hutt A, Riedel H: Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials.Physica D 2003,177(1–4):203–232. [Google Scholar]
  25. Yildiz I, Kiebel SJ: A hierarchical neuronal model for generation and online recognition of birdsongs.PloS Comput Biol 2011,7(12):e1002303. [Google Scholar]
  26. Veltz R, Faugeras O: Local/global analysis of the stationary solutions of some neural field equations.SIAM J Appl Dynamical Syst 2010, 9:954–998. [Google Scholar]
  27. Afraimovich VS, Zhigulin VP, Rabinovich MI: On the origin of reproducible sequential activity in neural circuits.Chaos 2004,14(4):1123–1129. [Google Scholar]
  28. Rabinovich MI, Huerta R, Varona P, Afraimovichs VS: Transient cognitive dynamics, metastability, and decision making.PLoS Comput Biolog 2008,4(5):e1000072. [Google Scholar]
  29. Hammerstein A: Nichtlineare Integralgleichungen nebst Anwendungen.Acta Math 1930, 54:117–176. [Google Scholar]
  30. Kosko B: Bidirectional associated memories.IEEE Trans Syst Man Cybernet 1988, 18:49–60. [Google Scholar]
  31. Hellwig B: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex.Biol Cybernet 2000, 82:11–121. [Google Scholar]
  32. Mazor O, Laurent G: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons.Neuron 2005,48(4):661–673. [Google Scholar]
  33. Rabinovich MI, Huerta R, Laurent G: Transient dynamics for neural processing.Science 2008,321(5885):48–50. [Google Scholar]
  34. Kiebel SJ, von Kriegstein K, Daunizeau J, Friston KJ: Recognizing sequences of sequences.Plos Comp Biol 2009,5(8):e1000464. [Google Scholar]
  35. Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga H, Wechselberger M: Mixed-mode oscillations with multiple time scales.SIAM Rev 2012,54(2):211–288. [http://epubs.siam.org/doi/abs/10.1137/100791233] [Google Scholar]
  36. Tsuda I: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.Behav Brain Sci 2001,24(5):793–847. [Google Scholar]
  37. Freeman W: Evidence from human scalp EEG of global chaotic itinerancy.Chaos 2003,13(3):1069. [Google Scholar]
  38. Appell J, Chen CJ: How to solve Hammerstein equations.J Integr Equat Appl 2006,18(3):287–296. [Google Scholar]
  39. Banas J: Integrable solutions of Hammerstein and Urysohn integral equations.J Austral Math Soc (Series A) 1989, 46:61–68. [Google Scholar]
  40. Lakestani M, Razzaghi M, Dehghan M: Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets.Math Problems Eng 2005, 113–121. [Google Scholar]
  41. Djitteab N, Senea M: An iterative algorithm for approximating solutions of Hammerstein integral equations.Numerical Funct Anal Optimization 2013,34(12):1299–1316. [Google Scholar]
  42. Hutt A, Longtin A: Effects of the anesthetic agent propofol on neural populations.Cogn Neurodyn 2010, 4:37–59. [Google Scholar]
  43. Bressloff PC, Coombes S: Physics of the extended neuron.Int J Mod Phys 1997,B 11(20):2343–2392. [Google Scholar]
  44. beim Graben P, Potthast R: A dynamic field account to language-related brain potentials. In Principles of Brain Dynamics: Global State Interactions. Edited by: Rabinovich M, Friston K, Varona P. Cambridge (MA): MIT Press; 2012:93–112. [Google Scholar]
  45. Haken H: Synergetics. An Introduction Volume 1 of Springer Series in Synergetics. Berlin: Springer; 1983. [1st edition 1977] [Google Scholar]
  46. Fukai T, Tanaka S: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all.Neural Comp 1997, 9:77–97. [http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.1.77] [Google Scholar]
  47. Wilson H, Cowan J: Excitatory and inhibitory interactions in localized populations of model neurons.Biophys J 1972, 12:1–24. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.