Issue
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Advances in Neural Population Models and Their Networks
Article Number 4
Number of page(s) 17
DOI https://doi.org/10.1140/epjnbp17
Published online 09 May 2014
  1. Wilson H, Cowan J: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Kybernetik 1973, 13:55–80. [Google Scholar]
  2. Amari SI: Dynamics of pattern formation in lateral-inhibition type neural fields.Biol Cybern 1977, 27:77–87. [Google Scholar]
  3. Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G: Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex.J Neurosci 1999,19(20):9016–9028. [http://www.jneurosci.org/content/19/20/9016.abstract] [Google Scholar]
  4. Bressloff PC: Spatiotemporal dynamics of continuum neural fields.J Phys A 2012,45(3):033001. [http://stacks.iop.org/1751-8121/45/i=3/a=033001] [Google Scholar]
  5. Coombes S: Large-scale neural dynamics: simple and complex.NeuroImage 2010,52(3):731–739. [http://www.sciencedirect.com/science/article/B6WNP-4Y70C6H-3/2/334a01e2662e998a0fdd3e1bbe9087d7] [Google Scholar]
  6. Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR: Modeling electrocortical activity through improved local approximations of integral neural field equations.Phys Rev E 2007,76(5):051901. [Google Scholar]
  7. Coombes S, Lord G, Owen M: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions.Physica D 2003, 178:219–241. [Google Scholar]
  8. Folias S, Bressloff P: Stimulus-locked waves and breathers in an excitatory neural network.SIAM J Appl Math 2005, 65:2067–2092. [Google Scholar]
  9. Hutt A, Rougier N: Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields.Phys Rev E 2010, 82:R055701. [Google Scholar]
  10. Coombes S, Owen M: Bumps, breathers, and waves in a neural network with spike frequency adaptation.Phys Rev Lett 2005, 94:148102. [Google Scholar]
  11. Ermentrout GB, McLeod JB: Existence and uniqueness of travelling waves for a neural network.Proc R Soc E 1993, 123A:461–478. [Google Scholar]
  12. Jirsa VK, Haken H: Field theory of electromagnetic brain activity.Phys Rev Lett 1996,77(5):960–963. [Google Scholar]
  13. Hutt A: Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds.Phys Rev E 2007, 75:026214. [Google Scholar]
  14. Bressloff PC: Traveling fronts and wave propagation failure in an inhomogeneous neural network.Physica D 2001, 155:83–100. [Google Scholar]
  15. Jirsa VK, Kelso JAS: Spatiotemporal pattern formation in neural systems with heterogeneous connection toplogies.Phys Rev E 2000,62(6):8462–8465. [Google Scholar]
  16. Kilpatrick ZP, Folias SE, Bressloff PC: Traveling pulses and wave propagation failure in inhomogeneous neural media.SIAM J Appl Dynanmical Syst 2008, 7:161–185. [Google Scholar]
  17. Schmidt H, Hutt A, Schimansky-Geier L: Wave fronts in inhomogeneous neural field models.Physica D 2009,238(14):1101–1112. [Google Scholar]
  18. Potthast R, beim Graben P: Inverse problems in neural field theory.SIAM J Appl Dynamical Syst 2009,8(4):1405–1433. [Google Scholar]
  19. Potthast R, beim Graben P: Existence and properties of solutions for neural field equations.Math Methods Appl Sci 2010,33(8):935–949. [Google Scholar]
  20. Coombes S, Laing C, Schmidt H, Svanstedt N, Wyller J: Waves in random neural media.Discrete Contin Dyn Syst A 2012, 32:2951–2970. [Google Scholar]
  21. Coombes S, Laing C: Pulsating fronts in periodically modulated neural field models.Phys Rev E 2011, 83:011912. [Google Scholar]
  22. Brackley C, Turner M: Persistent fluctuations of activity in undriven continuum neural field models with power-law connections.Phys Rev E 2009, 79:011918. [Google Scholar]
  23. beim Graben P, Potthast R: Inverse problems in dynamic cognitive modeling.Chaos 2009, 19:015103. [Google Scholar]
  24. Hutt A, Riedel H: Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials.Physica D 2003,177(1–4):203–232. [Google Scholar]
  25. Yildiz I, Kiebel SJ: A hierarchical neuronal model for generation and online recognition of birdsongs.PloS Comput Biol 2011,7(12):e1002303. [Google Scholar]
  26. Veltz R, Faugeras O: Local/global analysis of the stationary solutions of some neural field equations.SIAM J Appl Dynamical Syst 2010, 9:954–998. [Google Scholar]
  27. Afraimovich VS, Zhigulin VP, Rabinovich MI: On the origin of reproducible sequential activity in neural circuits.Chaos 2004,14(4):1123–1129. [Google Scholar]
  28. Rabinovich MI, Huerta R, Varona P, Afraimovichs VS: Transient cognitive dynamics, metastability, and decision making.PLoS Comput Biolog 2008,4(5):e1000072. [Google Scholar]
  29. Hammerstein A: Nichtlineare Integralgleichungen nebst Anwendungen.Acta Math 1930, 54:117–176. [Google Scholar]
  30. Kosko B: Bidirectional associated memories.IEEE Trans Syst Man Cybernet 1988, 18:49–60. [Google Scholar]
  31. Hellwig B: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex.Biol Cybernet 2000, 82:11–121. [Google Scholar]
  32. Mazor O, Laurent G: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons.Neuron 2005,48(4):661–673. [Google Scholar]
  33. Rabinovich MI, Huerta R, Laurent G: Transient dynamics for neural processing.Science 2008,321(5885):48–50. [Google Scholar]
  34. Kiebel SJ, von Kriegstein K, Daunizeau J, Friston KJ: Recognizing sequences of sequences.Plos Comp Biol 2009,5(8):e1000464. [Google Scholar]
  35. Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga H, Wechselberger M: Mixed-mode oscillations with multiple time scales.SIAM Rev 2012,54(2):211–288. [http://epubs.siam.org/doi/abs/10.1137/100791233] [Google Scholar]
  36. Tsuda I: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.Behav Brain Sci 2001,24(5):793–847. [Google Scholar]
  37. Freeman W: Evidence from human scalp EEG of global chaotic itinerancy.Chaos 2003,13(3):1069. [Google Scholar]
  38. Appell J, Chen CJ: How to solve Hammerstein equations.J Integr Equat Appl 2006,18(3):287–296. [Google Scholar]
  39. Banas J: Integrable solutions of Hammerstein and Urysohn integral equations.J Austral Math Soc (Series A) 1989, 46:61–68. [Google Scholar]
  40. Lakestani M, Razzaghi M, Dehghan M: Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets.Math Problems Eng 2005, 113–121. [Google Scholar]
  41. Djitteab N, Senea M: An iterative algorithm for approximating solutions of Hammerstein integral equations.Numerical Funct Anal Optimization 2013,34(12):1299–1316. [Google Scholar]
  42. Hutt A, Longtin A: Effects of the anesthetic agent propofol on neural populations.Cogn Neurodyn 2010, 4:37–59. [Google Scholar]
  43. Bressloff PC, Coombes S: Physics of the extended neuron.Int J Mod Phys 1997,B 11(20):2343–2392. [Google Scholar]
  44. beim Graben P, Potthast R: A dynamic field account to language-related brain potentials. In Principles of Brain Dynamics: Global State Interactions. Edited by: Rabinovich M, Friston K, Varona P. Cambridge (MA): MIT Press; 2012:93–112. [Google Scholar]
  45. Haken H: Synergetics. An Introduction Volume 1 of Springer Series in Synergetics. Berlin: Springer; 1983. [1st edition 1977] [Google Scholar]
  46. Fukai T, Tanaka S: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all.Neural Comp 1997, 9:77–97. [http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.1.77] [Google Scholar]
  47. Wilson H, Cowan J: Excitatory and inhibitory interactions in localized populations of model neurons.Biophys J 1972, 12:1–24. [Google Scholar]