Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Article Number 15
Number of page(s) 29
DOI https://doi.org/10.1140/epjnbp/s40366-014-0015-8
Published online 04 December 2014
  1. Neumann B, Hilliard MA: Loss of MEC-17 leads to microtubule instability and axonal degeneration.Cell Rep 2014, 6:93–103. doi:10.1016/J.Celrep.2013.12.004. [Google Scholar]
  2. Etienne-Manneville S: Actin and microtubules in cell motility: which one is in control?Traffic 2004, 5:470–477. doi:10.1111/J.1600-0854.2004.00196.X. [Google Scholar]
  3. Tamura N, Draviam VM: Microtubule plus-ends within a mitotic cell are ‘moving platforms’ with anchoring, signalling and force-coupling roles.Open Biol 2012, 2:Artn 120132. doi:10.1098/Rsob.120132. [Google Scholar]
  4. Gerlitz G, Reiner O, Bustin M: Microtubule dynamics alter the interphase nucleus.Cell Mol Life Sci 2013, 70:1255–1268. doi:10.1007/S00018-012-1200-5. [Google Scholar]
  5. Mitsuyama F, Kato K, Hirosawa K, Mikoshiba K, Okuya M, Karagiozov K, Kato Y, Kanno T, Sanoe H, Koide T: Redistribution of microtubules in dendrites of hippocampal CA1 neurons after tetanic stimulation during long-term potentiation.Ital J Anat Embryol 2008, 17:27. [Google Scholar]
  6. Craddock TJ, Tuszynski JA, Hameroff S: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?PLoS Comput Biol 2012, 8:e1002421. doi:10.1371/journal.pcbi.1002421. [Google Scholar]
  7. Akhshi TK, Wernike D, Piekny A: Microtubules and actin crosstalk in cell migration and division.Cytoskeleton 2014, 71:1–23. doi:10.1002/Cm.21150. [Google Scholar]
  8. Bouissou A, Verollet C, de Forges H, Haren L, Bellaiche Y, Perez F, Merdes AB: Raynaud-Messina: gamma-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning.Embo J 2014, 33:114–128. doi:10.1002/Embj.201385967. [Google Scholar]
  9. Zanic M, Widlund PO, Hyman AA, Howard J: Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels.Nat Cell Biol 2013, 15:688. doi:10.1038/Ncb2744. [Google Scholar]
  10. Janke C, Kneussel M: Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton.Trends Neurosci 2010, 33:362–372. doi:10.1016/J.Tins.2010.05.001. [Google Scholar]
  11. Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M: MAP65 coordinate microtubule growth during bundle formation.Plos One 2013, 8:ARTN e56808. doi:10.1371/journal.pone.0056808. [Google Scholar]
  12. Mitchison T, Wühr M, Mitchison P, Nguyen K, Ishihara A, Groen CM: Field: growth, interaction and positioning of microtubule asters in extremely large vertebrate embryo cells.Cytoskeleton (Hoboken) 2012, 69:738–750. [Google Scholar]
  13. Wuhr M, Dumont S, Groen AC, Needleman DJ, Mitchison TJ: How does a millimeter-sized cell find its center?Cell Cycle 2009, 8:1115–1121. [Google Scholar]
  14. Smurova AABKM, Verin AD, Alieva IB: Microtubule system in endothelial barrier dysfunction: disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm.Cell Tissue Biol 2008, 2:45–52. [Google Scholar]
  15. Sayas CJ, Avila J: Crosstalk between axonal classical microtubule-associated proteins and end binding proteins during axon extension: possible implications in neurodegeneration.J Alzheimers Dis 2013, x:xx. [Google Scholar]
  16. Gavin RH: Synergy of cytoskeleton components - cytoskeletal polymers exhibit both structural and functional synergy.Bioscience 1999, 49:641–655. doi:10.2307/1313440. [Google Scholar]
  17. Johansen KM, Johansen J: Recent glimpses of the elusive spindle matrix.Cell Cycle 2002, 1:312–314. [Google Scholar]
  18. Teng J, Takei Y, Harada A, Nakata T, Hirokawa N: Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization.Mol Biol Cell 2001, 12:433A. [Google Scholar]
  19. Clausen T, Ribbeck K: Self-organization of anastral spindles by synergy of dynamic instability, autocatalytic microtubule production, and a spatial signaling gradient.Plos One 2007, 2:ARTN e244. doi:10.1371/journal.pone.0000244. [Google Scholar]
  20. Schuh M, Ellenberg J: Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.Cell 2007, 130:484–498. doi:10.1016/J.Cell.2007.06.025. [Google Scholar]
  21. Karsenti E, Vernos I: Cell cycle - the mitotic spindle: a self-made machine.Science 2001, 294:543–547. doi:10.1126/Science.1063488. [Google Scholar]
  22. Brunet S, Polanski Z, Verlhac MH, Kubiak JZ, Maro B: Bipolar meiotic spindle formation without chromatin.Curr Biol 1998, 8:1231–1234. doi:10.1016/S0960-9822(07)00516-7. [Google Scholar]
  23. Pickettheaps JD, Tippit DH, Porter KR: Rethinking Mitosis.Cell 1982, 29:729–744. doi:10.1016/0092-8674(82)90435-4. [Google Scholar]
  24. Lince-Faria M, Maffini S, Orr B, Ding Y, Florindo C, Sunkel CE, Tavares A, Johansen J, Johansen KM, Maiato H: Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator.J Cell Biol 2009, 184:647–657. doi:10.1083/Jcb.200811012. [Google Scholar]
  25. Johansen KM, Johansen J: Cell and molecular biology of the spindle matrix.Int Rev Cytol 2007, 263:155. doi10.1016/S0074-7696(07)63004-6. [Google Scholar]
  26. Johansen KM, Forer A, Yao CF, Girton J, Johansen J: Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? (vol 19, pg 345, 2011).Chromosome Res 2011, 19:683. doi:10.1007/S10577-011-9217-4. [Google Scholar]
  27. Buljan VA, Holsinger RMD, Brown D, Bohorquez-Florez JJ, Hambly BD, Delikatny EJ, Ivanova EP, Banati RB: Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphology.Chaos 2013, 23:Artn 023120. doi10.1063/1.4807909. [Google Scholar]
  28. Dlugosz M, Antosiewicz JM: Evaluation of proteins’ rotational diffusion coefficients from simulations of their free brownian motion in volume-occupied environments.J Chem Theory Comput 2014, 10:481–491. doi:10.1021/Ct4008519. [Google Scholar]
  29. Hunyadi V, Chretien D, Flyvbjerg H, Janosi IM: Why is the microtubule lattice helical?Biol Cell 2007, 99:117–128. doi:10.1042/Bc20060059. [Google Scholar]
  30. Podgornik R, Parsegian VA: Charge-fluctuation forces between rodlike polyelectrolytes: pairwise summability reexamined.Phys Rev Lett 1998, 80:1560–1563. Doi: 10.1103/Physrevlett.80.1560. [Google Scholar]
  31. Duesberg P, Li RH, Fabarius A, Hehlmann R: The chromosomal basis of cancer.Cell Oncol 2005, 27:293–318. [Google Scholar]
  32. Li RH, Yerganian G, Duesberg P, Kraemer A, Willer A, Rausch C, Hehlmann R: Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells.P Natl Acad Sci USA 1997, 94:14506–14511. doi:10.1073/Pnas.94.26.14506. [Google Scholar]
  33. Shelansk M, Gaskin F, Cantor CR: Microtubule assembly in absence of added nucleotides.P Natl Acad Sci USA 1973, 70:765–768. doi10.1073/Pnas.70.3.765. [Google Scholar]
  34. Langford GM: Length and appearance of projections on neuronal microtubules invitro after negative staining - evidence against a crosslinking function for maps.J Ultra Mol Struct R 1983, 85:1–10. doi:10.1016/S0022-5320(83)90111-9. [Google Scholar]
  35. Buljan V, Ivanova EP, Cullen KM: How calcium controls microtubule anisotropic phase formation in the presence of microtubule-associated proteins in vitro.Biochem Bioph Res Co 2009, 381:224–228. [Google Scholar]
  36. Turner DC, Chang CY, Fang K, Brandow SL, Murphy DB: Selective adhesion of functional microtubules to patterned silane surfaces.Biophys J 1995, 69:2782–2789. [Google Scholar]
  37. Anderson PW: More is different - broken symmetry and nature of hierarchical structure of science.Science 1972, 177:393. doi:10.1126/Science.177.4047.393. [Google Scholar]
  38. Corning PA: Synergy and self-organization in the evolution of complex-systems.Syst Res 1995, 12:89–121. doi:10.1002/Sres.3850120204. [Google Scholar]
  39. Tuszynski JA, Hameroff S, Sataric MV, Trpisova B, Nip MLA: Ferroelectric behavior in microtubule dipole lattices - implications for information-processing: signaling and assembly disassembly.J Theor Biol 1995, 174:371–380. [Google Scholar]
  40. Tuszynski JA, Malinski W, Carpenter EJ, Luchko T, Huzil JT, Ludena RF: Tubulin electrostatics and isotype specific drug binding.Can J Phys 2008, 86:635–640. doi:10.1139/P07-199. [Google Scholar]
  41. Barton JS, Vandivort DL, Heacock DH, Coffman JA, Trygg KA: Microtubule assembly kinetics - changes with solution conditions.Biochem J 1987, 247:505–511. [Google Scholar]
  42. Tuszynski JA, Brown JA, Crawford E, Carpenter EJ, Nip MLA, Dixon JM, Sataric MV: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules.Math Comput Model 2005, 41:1055–1070. doi:10.1016/J.Mcm.2005.05.002. [Google Scholar]
  43. Zimmerman SB, Minton AP: Macromolecular crowding - biochemical, biophysical, and physiological consequences.Annu Rev Bioph Biom 1993, 22:27–65. doi:10.1146/Annurev.Bb.22.060193.000331. [Google Scholar]
  44. Odde DJ: Estimation of the diffusion-limited rate of microtubule assembly.Biophys J 1997, 73:88–96. [Google Scholar]
  45. Shelden E, Wadsworth P: Observation and quantification of individual microtubule behavior invivo - microtubule dynamics are cell-type specific.J Cell Biol 1993, 120:935–945. doi:10.1083/Jcb.120.4.935. [Google Scholar]
  46. Tabony J: Morphological bifurcations involving reaction–diffusion processes during microtubule formation.Science 1994, 264:245–248. doi:10.1126/Science.8146654. [Google Scholar]
  47. Hall D, Minton AP: Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges.Bba-Proteins Proteom 2003, 1649:127–139. doi:10.1016/S1570-9639(03)00167-5. [Google Scholar]
  48. Minton AP: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media.J Biol Chem 2001, 276:10577–10580. [Google Scholar]
  49. Minton AP: Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins: II. Kinetic models.Biophys J 2001, 80:1641–1648. [Google Scholar]
  50. Matthews BW, Remingto SJ: 3 dimensional structure of lysozyme from bacteriophage-T4.P Natl Acad Sci USA 1974, 71:4178–4182. doi:10.1073/Pnas.71.10.4178. [Google Scholar]
  51. Nogales E, Whittaker M, Milligan RA, Downing KH: High-resolution model of the microtubule.Cell 1999, 96:79–88. doi:10.1016/S0092-8674(00)80961-7. [Google Scholar]
  52. Herzfeld J: Crowding-induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points.J Mol Recognit 2004, 17:376–381. [Google Scholar]
  53. Onsager L: The effects of shape on the interaction of colloidal particles.Ann Ny Acad Sci 1949, 51:627–659. doi:10.1111/J.1749-6632.1949.Tb27296.X. [Google Scholar]
  54. Liu YF, Guo YX, Valles JM, Tang JX: Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions.P Natl Acad Sci USA 2006, 103:10654–10659. doi:10.1073/Pnas.0510381103. [Google Scholar]
  55. Hitt AL, Cross AR, Williams RC: Microtubule solutions display nematic liquid-crystalline structure.J Biol Chem 1990, 265:1639–1647. [Google Scholar]
  56. Baas PW, Ahmad FJ: Beyond taxol: microtubule-based treatment of disease and injury of the nervous system.Brain 2013, 136:2937–2951. doi:10.1093/Brain/Awt153. [Google Scholar]
  57. Schroer TA, Sheetz MP: Functions of Microtubule-Based Motors.Annu Rev Physiol 1991, 53:629–652. doi:10.1146/Annurev.Physiol.53.1.629. [Google Scholar]
  58. Sekulic DL, Sataric BM, Tuszynski JA, Sataric MV: Nonlinear ionic pulses along microtubules.Eur Phys J E 2011, 34:Artn 49. doi:10.1140/Epje/I2011-11049-0. [Google Scholar]
  59. Das M, Levine AJ, MacKintosh FC: Buckling and force propagation along intracellular microtubules.Epl-Europhys Lett 2008, 84:Artn 18003. doi:10.1209/0295-5075/84/18003. [Google Scholar]
  60. Sataric MV, Tuszynski JA, Zakula RB: Kink-like excitations as an energy-transfer mechanism in microtubules.Phys Rev E 1993, 48:589–597. doi:10.1103/Physreve.48.589. [Google Scholar]
  61. Hameroff SR, Watt RC: Information-processing in microtubules.J Theor Biol 1982, 98:549–561. [Google Scholar]
  62. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM: Conserved microtubule-actin interactions in cell movement and morphogenesis.Nat Cell Biol 2003, 5:599–609. doi:10.1038/Ncb0703-599. [Google Scholar]
  63. Kirschner M, Mitchison T: Beyond self-assembly - from microtubules to morphogenesis.Cell 1986, 45:329–342. [Google Scholar]
  64. Tabony J, Vuillard L, Papaseit C: Biological self-organisation and pattern formation by way of microtubule reaction–diffusion processes.Adv Complex Syst 1999, 02:221–276. doi:10.1142/S0219525999000138. [Google Scholar]
  65. Buljan VA, Holsinger RMD, Hambly BD, Banati RB, Ivanova EP: Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore-microtubule interface.J Biol Phys 2013, 39:81–98. doi:10.1007/S10867-012-9287-3. [Google Scholar]
  66. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA: Intracellular transport by active diffusion.Trends Cell Biol 2009, 19:423–427. doi:10.1016/J.Tcb.2009.04.004. [Google Scholar]
  67. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA: Nonequilibrium microtubule fluctuations in a model cytoskeleton.Phys Rev Lett 2008, 100:Artn 118104. doi10.1103/Physrevlett.100.118104. [Google Scholar]
  68. Chasey D: Left-handed subunit helix in flagellar microtubules.Nature 1974, 248:611–612. doi:10.1038/248611a0. [Google Scholar]
  69. Amos LA, Klug A: Arrangement of subunits in flagellar microtubules.J Cell Sci 1974, 14:523–549. [Google Scholar]
  70. Mandelkow EM, Schultheiss R, Rapp R, Muller M, Mandelkow E: On the surface lattice of microtubules - helix starts, protofilament number, seam, and handedness.J Cell Biol 1986, 102:1067–1073. doi:10.1083/Jcb.102.3.1067. [Google Scholar]
  71. Ebeling W: Strukturbildung bei irreversiblen prozessen. Leipzig: B.G. Teubner Verlagsgesellschaft; 1976. [Google Scholar]
  72. Siegrist SE, Doe CQ: Microtubule-induced cortical cell polarity.Gene Dev 2007, 21:483–496. doi:10.1101/Gad.1511207. [Google Scholar]
  73. Janulevicius A, van Pelt J, van Ooyen A: Compartment volume influences microtubule dynamic instability: a model study.Biophys J 2006, 90:788–798. Doi: 10.1529/Biophysj.105.059410. [Google Scholar]
  74. MacKintosh FC: Active diffusion: the erratic dance of chromosomal loci.P Natl Acad Sci USA 2012, 109:7138–7139. doi:10.1073/Pnas.1204794109. [Google Scholar]
  75. Flomenbom O: Dynamics of heterogeneous hard spheres in a file.Phys Rev E 2010, 82:Artn 031126. doi:10.1103/Physreve.82.031126. [Google Scholar]
  76. Flomenbom O: Renewal-anomalous-heterogeneous files.Phys Lett A 2010, 374:4331–4335. doi:10.1016/J.Physleta.2010.08.029. [Google Scholar]
  77. Vanag VK, Epstein IR: Cross-diffusion and pattern formation in reaction–diffusion systems.Phys Chem Chem Phys 2009, 11:897–912. doi:10.1039/B813825g. [Google Scholar]
  78. Vanag VK, Epstein IR: Pattern formation mechanisms in reaction–diffusion systems.Int J Dev Biol 2009, 53:673–681. doi:10.1387/Ijdb.072484vv. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.