Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Article Number 15
Number of page(s) 29
DOI https://doi.org/10.1140/epjnbp/s40366-014-0015-8
Published online 04 December 2014
  1. Neumann B, Hilliard MA: Loss of MEC-17 leads to microtubule instability and axonal degeneration.Cell Rep 2014, 6:93–103. doi:10.1016/J.Celrep.2013.12.004. [Google Scholar]
  2. Etienne-Manneville S: Actin and microtubules in cell motility: which one is in control?Traffic 2004, 5:470–477. doi:10.1111/J.1600-0854.2004.00196.X. [Google Scholar]
  3. Tamura N, Draviam VM: Microtubule plus-ends within a mitotic cell are ‘moving platforms’ with anchoring, signalling and force-coupling roles.Open Biol 2012, 2:Artn 120132. doi:10.1098/Rsob.120132. [Google Scholar]
  4. Gerlitz G, Reiner O, Bustin M: Microtubule dynamics alter the interphase nucleus.Cell Mol Life Sci 2013, 70:1255–1268. doi:10.1007/S00018-012-1200-5. [Google Scholar]
  5. Mitsuyama F, Kato K, Hirosawa K, Mikoshiba K, Okuya M, Karagiozov K, Kato Y, Kanno T, Sanoe H, Koide T: Redistribution of microtubules in dendrites of hippocampal CA1 neurons after tetanic stimulation during long-term potentiation.Ital J Anat Embryol 2008, 17:27. [Google Scholar]
  6. Craddock TJ, Tuszynski JA, Hameroff S: Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation?PLoS Comput Biol 2012, 8:e1002421. doi:10.1371/journal.pcbi.1002421. [Google Scholar]
  7. Akhshi TK, Wernike D, Piekny A: Microtubules and actin crosstalk in cell migration and division.Cytoskeleton 2014, 71:1–23. doi:10.1002/Cm.21150. [Google Scholar]
  8. Bouissou A, Verollet C, de Forges H, Haren L, Bellaiche Y, Perez F, Merdes AB: Raynaud-Messina: gamma-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning.Embo J 2014, 33:114–128. doi:10.1002/Embj.201385967. [Google Scholar]
  9. Zanic M, Widlund PO, Hyman AA, Howard J: Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels.Nat Cell Biol 2013, 15:688. doi:10.1038/Ncb2744. [Google Scholar]
  10. Janke C, Kneussel M: Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton.Trends Neurosci 2010, 33:362–372. doi:10.1016/J.Tins.2010.05.001. [Google Scholar]
  11. Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M: MAP65 coordinate microtubule growth during bundle formation.Plos One 2013, 8:ARTN e56808. doi:10.1371/journal.pone.0056808. [Google Scholar]
  12. Mitchison T, Wühr M, Mitchison P, Nguyen K, Ishihara A, Groen CM: Field: growth, interaction and positioning of microtubule asters in extremely large vertebrate embryo cells.Cytoskeleton (Hoboken) 2012, 69:738–750. [Google Scholar]
  13. Wuhr M, Dumont S, Groen AC, Needleman DJ, Mitchison TJ: How does a millimeter-sized cell find its center?Cell Cycle 2009, 8:1115–1121. [Google Scholar]
  14. Smurova AABKM, Verin AD, Alieva IB: Microtubule system in endothelial barrier dysfunction: disassembly of peripheral microtubules and microtubule reorganization in internal cytoplasm.Cell Tissue Biol 2008, 2:45–52. [Google Scholar]
  15. Sayas CJ, Avila J: Crosstalk between axonal classical microtubule-associated proteins and end binding proteins during axon extension: possible implications in neurodegeneration.J Alzheimers Dis 2013, x:xx. [Google Scholar]
  16. Gavin RH: Synergy of cytoskeleton components - cytoskeletal polymers exhibit both structural and functional synergy.Bioscience 1999, 49:641–655. doi:10.2307/1313440. [Google Scholar]
  17. Johansen KM, Johansen J: Recent glimpses of the elusive spindle matrix.Cell Cycle 2002, 1:312–314. [Google Scholar]
  18. Teng J, Takei Y, Harada A, Nakata T, Hirokawa N: Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization.Mol Biol Cell 2001, 12:433A. [Google Scholar]
  19. Clausen T, Ribbeck K: Self-organization of anastral spindles by synergy of dynamic instability, autocatalytic microtubule production, and a spatial signaling gradient.Plos One 2007, 2:ARTN e244. doi:10.1371/journal.pone.0000244. [Google Scholar]
  20. Schuh M, Ellenberg J: Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.Cell 2007, 130:484–498. doi:10.1016/J.Cell.2007.06.025. [Google Scholar]
  21. Karsenti E, Vernos I: Cell cycle - the mitotic spindle: a self-made machine.Science 2001, 294:543–547. doi:10.1126/Science.1063488. [Google Scholar]
  22. Brunet S, Polanski Z, Verlhac MH, Kubiak JZ, Maro B: Bipolar meiotic spindle formation without chromatin.Curr Biol 1998, 8:1231–1234. doi:10.1016/S0960-9822(07)00516-7. [Google Scholar]
  23. Pickettheaps JD, Tippit DH, Porter KR: Rethinking Mitosis.Cell 1982, 29:729–744. doi:10.1016/0092-8674(82)90435-4. [Google Scholar]
  24. Lince-Faria M, Maffini S, Orr B, Ding Y, Florindo C, Sunkel CE, Tavares A, Johansen J, Johansen KM, Maiato H: Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator.J Cell Biol 2009, 184:647–657. doi:10.1083/Jcb.200811012. [Google Scholar]
  25. Johansen KM, Johansen J: Cell and molecular biology of the spindle matrix.Int Rev Cytol 2007, 263:155. doi10.1016/S0074-7696(07)63004-6. [Google Scholar]
  26. Johansen KM, Forer A, Yao CF, Girton J, Johansen J: Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? (vol 19, pg 345, 2011).Chromosome Res 2011, 19:683. doi:10.1007/S10577-011-9217-4. [Google Scholar]
  27. Buljan VA, Holsinger RMD, Brown D, Bohorquez-Florez JJ, Hambly BD, Delikatny EJ, Ivanova EP, Banati RB: Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphology.Chaos 2013, 23:Artn 023120. doi10.1063/1.4807909. [Google Scholar]
  28. Dlugosz M, Antosiewicz JM: Evaluation of proteins’ rotational diffusion coefficients from simulations of their free brownian motion in volume-occupied environments.J Chem Theory Comput 2014, 10:481–491. doi:10.1021/Ct4008519. [Google Scholar]
  29. Hunyadi V, Chretien D, Flyvbjerg H, Janosi IM: Why is the microtubule lattice helical?Biol Cell 2007, 99:117–128. doi:10.1042/Bc20060059. [Google Scholar]
  30. Podgornik R, Parsegian VA: Charge-fluctuation forces between rodlike polyelectrolytes: pairwise summability reexamined.Phys Rev Lett 1998, 80:1560–1563. Doi: 10.1103/Physrevlett.80.1560. [Google Scholar]
  31. Duesberg P, Li RH, Fabarius A, Hehlmann R: The chromosomal basis of cancer.Cell Oncol 2005, 27:293–318. [Google Scholar]
  32. Li RH, Yerganian G, Duesberg P, Kraemer A, Willer A, Rausch C, Hehlmann R: Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells.P Natl Acad Sci USA 1997, 94:14506–14511. doi:10.1073/Pnas.94.26.14506. [Google Scholar]
  33. Shelansk M, Gaskin F, Cantor CR: Microtubule assembly in absence of added nucleotides.P Natl Acad Sci USA 1973, 70:765–768. doi10.1073/Pnas.70.3.765. [Google Scholar]
  34. Langford GM: Length and appearance of projections on neuronal microtubules invitro after negative staining - evidence against a crosslinking function for maps.J Ultra Mol Struct R 1983, 85:1–10. doi:10.1016/S0022-5320(83)90111-9. [Google Scholar]
  35. Buljan V, Ivanova EP, Cullen KM: How calcium controls microtubule anisotropic phase formation in the presence of microtubule-associated proteins in vitro.Biochem Bioph Res Co 2009, 381:224–228. [Google Scholar]
  36. Turner DC, Chang CY, Fang K, Brandow SL, Murphy DB: Selective adhesion of functional microtubules to patterned silane surfaces.Biophys J 1995, 69:2782–2789. [Google Scholar]
  37. Anderson PW: More is different - broken symmetry and nature of hierarchical structure of science.Science 1972, 177:393. doi:10.1126/Science.177.4047.393. [Google Scholar]
  38. Corning PA: Synergy and self-organization in the evolution of complex-systems.Syst Res 1995, 12:89–121. doi:10.1002/Sres.3850120204. [Google Scholar]
  39. Tuszynski JA, Hameroff S, Sataric MV, Trpisova B, Nip MLA: Ferroelectric behavior in microtubule dipole lattices - implications for information-processing: signaling and assembly disassembly.J Theor Biol 1995, 174:371–380. [Google Scholar]
  40. Tuszynski JA, Malinski W, Carpenter EJ, Luchko T, Huzil JT, Ludena RF: Tubulin electrostatics and isotype specific drug binding.Can J Phys 2008, 86:635–640. doi:10.1139/P07-199. [Google Scholar]
  41. Barton JS, Vandivort DL, Heacock DH, Coffman JA, Trygg KA: Microtubule assembly kinetics - changes with solution conditions.Biochem J 1987, 247:505–511. [Google Scholar]
  42. Tuszynski JA, Brown JA, Crawford E, Carpenter EJ, Nip MLA, Dixon JM, Sataric MV: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules.Math Comput Model 2005, 41:1055–1070. doi:10.1016/J.Mcm.2005.05.002. [Google Scholar]
  43. Zimmerman SB, Minton AP: Macromolecular crowding - biochemical, biophysical, and physiological consequences.Annu Rev Bioph Biom 1993, 22:27–65. doi:10.1146/Annurev.Bb.22.060193.000331. [Google Scholar]
  44. Odde DJ: Estimation of the diffusion-limited rate of microtubule assembly.Biophys J 1997, 73:88–96. [Google Scholar]
  45. Shelden E, Wadsworth P: Observation and quantification of individual microtubule behavior invivo - microtubule dynamics are cell-type specific.J Cell Biol 1993, 120:935–945. doi:10.1083/Jcb.120.4.935. [Google Scholar]
  46. Tabony J: Morphological bifurcations involving reaction–diffusion processes during microtubule formation.Science 1994, 264:245–248. doi:10.1126/Science.8146654. [Google Scholar]
  47. Hall D, Minton AP: Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges.Bba-Proteins Proteom 2003, 1649:127–139. doi:10.1016/S1570-9639(03)00167-5. [Google Scholar]
  48. Minton AP: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media.J Biol Chem 2001, 276:10577–10580. [Google Scholar]
  49. Minton AP: Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins: II. Kinetic models.Biophys J 2001, 80:1641–1648. [Google Scholar]
  50. Matthews BW, Remingto SJ: 3 dimensional structure of lysozyme from bacteriophage-T4.P Natl Acad Sci USA 1974, 71:4178–4182. doi:10.1073/Pnas.71.10.4178. [Google Scholar]
  51. Nogales E, Whittaker M, Milligan RA, Downing KH: High-resolution model of the microtubule.Cell 1999, 96:79–88. doi:10.1016/S0092-8674(00)80961-7. [Google Scholar]
  52. Herzfeld J: Crowding-induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points.J Mol Recognit 2004, 17:376–381. [Google Scholar]
  53. Onsager L: The effects of shape on the interaction of colloidal particles.Ann Ny Acad Sci 1949, 51:627–659. doi:10.1111/J.1749-6632.1949.Tb27296.X. [Google Scholar]
  54. Liu YF, Guo YX, Valles JM, Tang JX: Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions.P Natl Acad Sci USA 2006, 103:10654–10659. doi:10.1073/Pnas.0510381103. [Google Scholar]
  55. Hitt AL, Cross AR, Williams RC: Microtubule solutions display nematic liquid-crystalline structure.J Biol Chem 1990, 265:1639–1647. [Google Scholar]
  56. Baas PW, Ahmad FJ: Beyond taxol: microtubule-based treatment of disease and injury of the nervous system.Brain 2013, 136:2937–2951. doi:10.1093/Brain/Awt153. [Google Scholar]
  57. Schroer TA, Sheetz MP: Functions of Microtubule-Based Motors.Annu Rev Physiol 1991, 53:629–652. doi:10.1146/Annurev.Physiol.53.1.629. [Google Scholar]
  58. Sekulic DL, Sataric BM, Tuszynski JA, Sataric MV: Nonlinear ionic pulses along microtubules.Eur Phys J E 2011, 34:Artn 49. doi:10.1140/Epje/I2011-11049-0. [Google Scholar]
  59. Das M, Levine AJ, MacKintosh FC: Buckling and force propagation along intracellular microtubules.Epl-Europhys Lett 2008, 84:Artn 18003. doi:10.1209/0295-5075/84/18003. [Google Scholar]
  60. Sataric MV, Tuszynski JA, Zakula RB: Kink-like excitations as an energy-transfer mechanism in microtubules.Phys Rev E 1993, 48:589–597. doi:10.1103/Physreve.48.589. [Google Scholar]
  61. Hameroff SR, Watt RC: Information-processing in microtubules.J Theor Biol 1982, 98:549–561. [Google Scholar]
  62. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM: Conserved microtubule-actin interactions in cell movement and morphogenesis.Nat Cell Biol 2003, 5:599–609. doi:10.1038/Ncb0703-599. [Google Scholar]
  63. Kirschner M, Mitchison T: Beyond self-assembly - from microtubules to morphogenesis.Cell 1986, 45:329–342. [Google Scholar]
  64. Tabony J, Vuillard L, Papaseit C: Biological self-organisation and pattern formation by way of microtubule reaction–diffusion processes.Adv Complex Syst 1999, 02:221–276. doi:10.1142/S0219525999000138. [Google Scholar]
  65. Buljan VA, Holsinger RMD, Hambly BD, Banati RB, Ivanova EP: Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore-microtubule interface.J Biol Phys 2013, 39:81–98. doi:10.1007/S10867-012-9287-3. [Google Scholar]
  66. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA: Intracellular transport by active diffusion.Trends Cell Biol 2009, 19:423–427. doi:10.1016/J.Tcb.2009.04.004. [Google Scholar]
  67. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA: Nonequilibrium microtubule fluctuations in a model cytoskeleton.Phys Rev Lett 2008, 100:Artn 118104. doi10.1103/Physrevlett.100.118104. [Google Scholar]
  68. Chasey D: Left-handed subunit helix in flagellar microtubules.Nature 1974, 248:611–612. doi:10.1038/248611a0. [Google Scholar]
  69. Amos LA, Klug A: Arrangement of subunits in flagellar microtubules.J Cell Sci 1974, 14:523–549. [Google Scholar]
  70. Mandelkow EM, Schultheiss R, Rapp R, Muller M, Mandelkow E: On the surface lattice of microtubules - helix starts, protofilament number, seam, and handedness.J Cell Biol 1986, 102:1067–1073. doi:10.1083/Jcb.102.3.1067. [Google Scholar]
  71. Ebeling W: Strukturbildung bei irreversiblen prozessen. Leipzig: B.G. Teubner Verlagsgesellschaft; 1976. [Google Scholar]
  72. Siegrist SE, Doe CQ: Microtubule-induced cortical cell polarity.Gene Dev 2007, 21:483–496. doi:10.1101/Gad.1511207. [Google Scholar]
  73. Janulevicius A, van Pelt J, van Ooyen A: Compartment volume influences microtubule dynamic instability: a model study.Biophys J 2006, 90:788–798. Doi: 10.1529/Biophysj.105.059410. [Google Scholar]
  74. MacKintosh FC: Active diffusion: the erratic dance of chromosomal loci.P Natl Acad Sci USA 2012, 109:7138–7139. doi:10.1073/Pnas.1204794109. [Google Scholar]
  75. Flomenbom O: Dynamics of heterogeneous hard spheres in a file.Phys Rev E 2010, 82:Artn 031126. doi:10.1103/Physreve.82.031126. [Google Scholar]
  76. Flomenbom O: Renewal-anomalous-heterogeneous files.Phys Lett A 2010, 374:4331–4335. doi:10.1016/J.Physleta.2010.08.029. [Google Scholar]
  77. Vanag VK, Epstein IR: Cross-diffusion and pattern formation in reaction–diffusion systems.Phys Chem Chem Phys 2009, 11:897–912. doi:10.1039/B813825g. [Google Scholar]
  78. Vanag VK, Epstein IR: Pattern formation mechanisms in reaction–diffusion systems.Int J Dev Biol 2009, 53:673–681. doi:10.1387/Ijdb.072484vv. [Google Scholar]