Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 12
Number of page(s) 14
DOI https://doi.org/10.1140/epjnbp/s40366-015-0027-z
Published online 24 December 2015
  1. Association AP. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington DC: Am Psychiatric Publishing, Inc; 2000, pp. 39–135.
  2. Polanczyk G, de Lima M, Horta B, Biederman J, Rohde L. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007; 164(6):942–8.
  3. Rapport MD, Moffitt C. Attention deficit/hyperactivity disorder and methylphenidate: a review of height/weight, cardiovascular, and somatic complaint side effects. Clin Psychol Rev. 2002; 22(8):1107–31.
  4. Lubar JF. Discourse on the development of eeg diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self-Regul. 1991; 16(3):201–25.
  5. Wolpaw JR, Wolpaw EW. Brain-Computer Interfaces: Principles and Practice. New York: Oxford University Press; 2012.
  6. Jiang L, Guan C, Zhang H, Wang C, Jiang B. Brain computer interface based 3D game for attention training and rehabilitation. In: Proc. 6th IEEE Conf. Ind. Elect. and Appl. China: IEEE Computer Society: 2011. p. 124–127.
  7. Tai C, Wang J, Yan N, Liu H, Liu M. Brain-computer interfaces based on attention and complex mental tasks. In: Proc. 1st Int. Conf. Dig. Human Model. Beijing, China: Springer: 2007. p. 467–473.
  8. Castelo-Branco M, Pires G, Torres M, Casaleiro N, Nunes U. Playing tetris with non-invasive BCI. In: Proc IEEE 1st Int. Conf. Serious Games and Appl. for Health. Braga, Portugal: IEEE: 2011. p. 1–6.
  9. Thomas KP, Vinod AP, Guan C. Enhancement of attention and cognitive skills using EEG based neurofeedback game. In: Proc. 6th Int. IEEE/EMBS Conf. Neural Eng. CA, USA: IEEE: 2013. p. 21–24.
  10. Lim CG, Fung DSS, Zhao Y, Lee TS, Teng SSW, Krishnan KRR, Guan C, Zhang H. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. Plos One. 2012; 7(10):1–8.
  11. Johnstone S. Computer gaming and ADHD: Potential positive influences on behaviour. IEEE Technol Soc Mag. 2013; 32(1):20–2.
  12. Abdulla A, Puthusserypady S. A 3D learning playground for potential attention training in adhd: a brain computer interface approach. In: 37th Ann. Intl. IEEE EMBS Conf. Milan, Italy: IEEE: 2015.
  13. Emanuel D, Ritter W, Mccallum CW. The endogenous components of the ERP In: Callaway E, Tueting P, Koslow SH, editors. Event-related Brain Potentials in Man. New York: Academic Press: 1978. p. 349–411.
  14. Lance BJ, Kerick SE, Ries AJ, Oie KS, McDowell K. Brain-computer interface technologies in the coming decades. IEEE Proc. 2012; 100(13):1585–99.
  15. Kurtz LA. Visual perception problems in children with ADHD, Autism, and other learning disabilities: a guide for parents and professionals. Philadelphia PA: Jessica Kingsley Publishers; 2006, pp. 15–78.
  16. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988; 70(6):510–23.
  17. Frintrop S, Rome E, Christensen HI. Computational visual attention systems and their cognitive foundations: a survey. ACM Transactions on Applied Perception (TAP). 2010; 7(1):1–46.
  18. Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. Rehabil Psychol. 2001; 46(3):296–311.
  19. Rizzo AA, Bowerly T, Buckwalter JG, Schultheis M, Matheis R, Shahabi C, et al. Virtual environments for the assessment of attention and memory processes: the virtual classroom and office. In: Proc. of the 4th Int. Conf. on Disability, Virtual Reality and Assoc. Tech. Reading. UK: University of Reading: 2002. p. 3–12.
  20. Lee JC. Hacking the nintendo wii remote. IEEE Pervasive Comput. 2008; 7(3):39–45.
  21. Kooima R. Generalized perspective projection. 2008, p1–7. [online] Available: http://csc.lsu.edu/~kooima/articles/genperspective/index.html.
  22. Thulasidas M, Guan C, Wu J. Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2006; 14(1):24–9.
  23. Panicker RC, Puthusserypady S, Sun Y. An asynchronous p300 bci with ssvep-based control state detection. IEEE Trans Biomed Eng. 2011; 58(6):1781–8.
  24. He P, Wilson G, Russell C. Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput. 2004; 42(3):407–12.
  25. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields (i): a critical tutorial review. Psychophysiology. 2011; 48(12):1711–25.
  26. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for eeg-based brain-computer interfaces. J Neural Eng. 2007; 4:1–24.
  27. Rasmussen PM, Abrahamsen TJ, Madsen KH, Hansen LK. Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation. NeuroImage. 2012; 60(3):1807–18.
  28. Matthews BW. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim Biophys Acta (BBA)-Protein Structure. 1975; 405(2):442–51.
  29. Bayliss JD. Use of the evoked potential p3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng. 2003; 11(2):113–6.
  30. Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI competition 2003-data set iib: support vector machines for the p300 speller paradigm. IEEE Trans Biomed Eng. 2004; 51(6):1073–6.
  31. Barry RJ, Johnstone SJ, Clarke AR. A review of electrophysiology in attention-deficit/hyperactivity disorder: Event-related potentials. Clin Neurophysiol. 2003; 114(2):184–98.
  32. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002; 113(6):767–91.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.