Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 4, Number 1, December 2016
Article Number 3
Number of page(s) 23
DOI https://doi.org/10.1140/epjnbp/s40366-016-0030-z
Published online 10 May 2016
  1. Segel LA. Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge: Cambridge University Press; 1984.
  2. Möller Y, Siegemund M, Beyes S, Herr R, Lecis D, Delia D, Kontermann R, Brummer T, Pfizenmaier K, Olayioye M. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells. PLoS ONE. 2014; 9(9):e107165.
  3. Zinöcker S, Vaage J. Rat mesenchymal stromal cells inhibit T cell proliferation but not cytokine production through inducible nitric oxide synthase. Front Immunol. 2012; 3(62):1–13.
  4. Taylor SC, Posch A. The design of a quantitative Western blot experiment. BioMed Res Int. 2014; 2014:8. Article ID 361590.
  5. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalize biological replicates of Western Blot data. PLoS ONE. 2014; 9(1):e87293.
  6. Kreutz C, Rodriguez MMB, Maiwald T, Seidl M, Blum HE, Mohr L, Timmer J. An error model for protein quantification. Bioinformatics. 2007; 23(20):2747–53.
  7. Thomaseth C, Radde N. Normalization of Western blot data affects the statistics of estimators. 2016. Submitted to FOSBE.
  8. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models. Chichester: John Wiley & Sons; 2004.
  9. Frank PM. Introduction to System Sensitivity Theory. New York: Academic Press Inc; 1978.
  10. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011; 5(6):336–46.
  11. Kim KA, Spencer SL, Albeck JG, Burke JM, Sorger PK, Gaudet S, Kim DH. Systematic calibration of a cell signaling network model. BMC Bioinf. 2010; 11(202):1–14.
  12. Kiparissides A, Kucherernko SS, Mantalaris A, Pistikopoulus EN. Global sensitivity analysis challenges in biological systems modeling. Ind Eng Chem Res. 2009; 48(15):7168–80.
  13. Kent E, Neumann S, Kummer U, Mendes P. What can we learn from global sensitivity analysis of biochemical systems?PLoS ONE. 2013; 8(11):e79244.
  14. Santos SDM, Verveer PJ, Bastiaens PIH. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol. 2007; 9(3):324–30.
  15. Jensch A, Thomaseth C, Radde N. Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision making processes on the example of the MAPK signaling pathway in PC-12 cell lines. Under review. 2016. BMC Systems Biology (Under review).
  16. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global Sensitivity Analysis: The Primer. Hoboken, NJ: John Wiley & Sons; 2008.
  17. Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul. 2001; 55:271–80.
  18. Zheng Y, Rundell A. Comparative study of parameter sensitivity analyses of the TCR-activated ERK-MAPK signalling pathway. IEE Proc Syst Biol. 2006; 153(4):201–11.
  19. Zhang XY, Trame MN, Lesko LJ, Schmidt S. Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacometrics Syst Pharmacol. 2015; 4:69–79.
  20. Hinkley DV. On the ratio of two correlated normal random variables. Biometrika. 1969; 56(3):635–9.
  21. Marsaglia G. Ratios of normal variables. J Stat Softw. 2006; 16(4):1–10.
  22. Kholodenko B. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascade. Eur J Biochem. 2000; 267(6):1583–88.
  23. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005; 6:827–37.
  24. Kolch W, Calder M, Gilbert D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. 2005; 579(8):1891–95.
  25. Gouzé JL. Positive and negative circuits in dynamical systems. J Biol Syst. 1998; 6(11):11–15.
  26. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comp Phys Comm. 2010; 181:259–70.
  27. Bilal N. Implementation of Sobol’s method of global sensitivity analysis to a compressor simulation model. In: 22nd Int. Compressor Eng. Conf. Purdue, USA: Purdue e-Pubs: 2014.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.