Open Access
EPJ Nonlinear Biomed Phys
Volume 1, Number 1, December 2013
Article Number 4
Number of page(s) 16
Published online 24 June 2013
  1. Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K: Synchronization and desynchronization in epilepsy: controversies and hypotheses.J Physiol 2013, 591:787–797. [Google Scholar]
  2. Uhlhaas PJ, Singer W: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.Neuron 2006, 52:155–168. [Google Scholar]
  3. Wendling F, Chauvel P, Biraben A, Bartolomei F: From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy.Frontiers Syst Neurosci 2010, 4:154. [Google Scholar]
  4. Bartolomei F, Wendling F: Synchrony in neural networks underlying seizure generation in human partial epilepsies. In Coordinated activity in the brain: measurements and relevance to brain function and behavior. Edited by: Velazquez J, Wennberg R. New York: Springer; 2009:137–147. [Google Scholar]
  5. Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P, Bartolomei F: The role of corticothalamic coupling in human temporal lobe epilepsy.Brain 2006, 129:1917–1928. [Google Scholar]
  6. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F: Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization.Brain 2009, 132:2091–2101. [Google Scholar]
  7. Ponten S, Bartolomei F, Stam C: Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures.Clin Neurophysiol 2007. doi:10.1016/j.clinph.2006.12.002. [Google Scholar]
  8. Kramer MA, Kolaczyk ED, Kirsch HE: Emergent network topology at seizure onset in humans.Epilepsy Res 2008, 2–3:173–186. [Google Scholar]
  9. Rosenow F, Luders H: Presurgical evaluation of epilepsy.Brain 2001, 124:1683–1700. [Google Scholar]
  10. Bartolomei F, Chauvel P, Wendling F: Spatio-temporal dynamics of neuronal networks in partial epilepsy.Rev Neurol (Paris) 2005, 161:767–780. [Google Scholar]
  11. Wendling F, Badier J, Chauvel P, Coatrieux J: A method to quantify invariant information in depth-recorded epileptic seizures.Electroenceph Clin Neurophysiol 1997, 102:472–485. [Google Scholar]
  12. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS: Single-neuron dynamics in human focal epilepsy.Nat Neurosci 2011, 14:635–641. [Google Scholar]
  13. Bancaud J, Angelergues R, Bernouilli C, Bonis A, Bordas-Ferrer M, Bresson M, Buser P, Covello L, Morel P, Szikla G, et al.: Functional stereotaxic exploration (SEEG) of epilepsy.Electroencephalogr Clin Neurophysiol 1970, 28:85–86. [Google Scholar]
  14. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P: Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset.Brain 2003, 126:1449–1459. [Google Scholar]
  15. Alarcon G, Binnie CD, Elwes RD, Polkey CE: Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy.Electroencephalogr Clin Neurophysiol 1995, 94:326–337. [Google Scholar]
  16. Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, Clemenceau S, Baulac M, Miles R: Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy.Nat Neurosci 2011, 14:627–634. [Google Scholar]
  17. Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F: Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG.J Clin Neurophysiol 2005, 22:343–356. [Google Scholar]
  18. Gnatkovsky V, Librizzi L, Trombin F, de Curtis M: Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortexin vitro.Ann Neurol 2008, 64:674–686. [Google Scholar]
  19. Javidan M, Katz A, Tran T, Pacia S, Spencer D, Spencer S: Frequency characteristics of neocortical and hippocampal onset seizures.Epilepsia 1992,33(Suppl 3):58. [Google Scholar]
  20. Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P: Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy.Epilepsy Res 2004, 61:89–104. [Google Scholar]
  21. Bartolomei F, Chauvel P, Wendling F: Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG.Brain 2008, 131:1818–1830. [Google Scholar]
  22. Aubert S, Wendling F, Regis J, McGonigal A, Figarella-Branger D, Peragut JC, Girard N, Chauvel P, Bartolomei F: Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours.Brain 2009, 132:3072–3086. [Google Scholar]
  23. Brazier MA: Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations.Exp Neurol 1972, 36:263–272. [Google Scholar]
  24. Gotman J, Levtova V: Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study.Epilepsy Res 1996, 25:51–57. [Google Scholar]
  25. Le Van Quyen M, Adam C, Baulac M, Martinerie J, Varela F: Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures.Brain Res 1998, 792:24–40. [Google Scholar]
  26. Bartolomei F, Wendling F, Vignal J, Kochen S, Bellanger J, Badier J, Le Bouquin-Jeannes R, Chauvel P: Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography.Clin Neurophysiol 1999, 110:1741–1754. [Google Scholar]
  27. Wendling F, Ansari-Asl K, Bartolomei F, Senhadji L: From EEG signals to brain connectivity: a model-based evaluation of interdependence measures.J Neurosci Methods 2009,30(183):9–18. [Google Scholar]
  28. Bartolomei F, Wendling F, Bellanger J, Regis J, Chauvel P: Neural networks involved in temporal lobe seizures: a nonlinear regression analysis of SEEG signals interdependencies.Clin Neurophysiol 2001, 112:1746–1760. [Google Scholar]
  29. Wendling F, Bartolomei F: Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks.Epileptic Disord 2001, Special Issue:67–78. [Google Scholar]
  30. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH: Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.J Neurosci 2002, 22:1480–1495. [Google Scholar]
  31. Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva JP, Guye M, Chauvel P: Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study.Epilepsia 2005, 46:677–687. [Google Scholar]
  32. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P: Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG.Clin Neurophysiol 2001, 112:1201–1218. [Google Scholar]
  33. Netoff TI, Schiff SJ: Decreased neuronal synchronization during experimental seizures.J Neurosci 2002, 22:7297–7307. [Google Scholar]
  34. Cymerblit-Sabba A, Schiller Y: Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo.J Neurophysiol 2012, 107:1718–1730. [Google Scholar]
  35. Velazquez J, Guevara Erra R, Wennberg R, Dominguez L: Correlations of cellular activities in the nervous system: physiological and methodological considerations. In Coordinated activity in the brain: measurements and relevance to brain function and behavior. Edited by: Velazquez J, Wennberg R. New York: Springer; 2009:1–24. [Google Scholar]
  36. Varela F, Lachaux JP, Rodriguez E, Martinerie J: The brainweb: phase synchronization and large-scale integration.Nat Rev Neurosci 2001, 2:229–239. [Google Scholar]
  37. Stam CJ, van Straaten EC: The organization of physiological brain networks.Clin Neurophysiol 2012, 123:1067–1087. [Google Scholar]
  38. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R: Cognitive fitness of cost-efficient brain functional networks.Proc Natl Acad Sci U S A 2009, 106:11747–11752. [Google Scholar]
  39. Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E: Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy.Brain 1994, 117:71–90. [Google Scholar]
  40. Bartolomei F, Barbeau E, Gavaret M, Guye M, McGonigal A, Regis J, Chauvel P: Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories.Neurology 2004, 63:858–864. [Google Scholar]
  41. Barbeau E, Wendling F, Regis J, Duncan R, Poncet M, Chauvel P, Bartolomei F: Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas.Neuropsychologia 2005, 43:1329–1337. [Google Scholar]
  42. Bartolomei F, Barbeau EJ, Nguyen T, McGonigal A, Regis J, Chauvel P, Wendling F: Rhinal-hippocampal interactions during deja vu.Clin Neurophysiol 2012, 123:489–495. [Google Scholar]
  43. Bartolomei F, Wendling F, Vignal JP, Chauvel P, Liegeois-Chauvel C: Neural networks underlying epileptic humming.Epilepsia 2002, 43:1001–1012. [Google Scholar]
  44. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F: Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization.Brain 2009, 132:2091–2101. [Google Scholar]
  45. Dehaene S, Naccache L: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework.Cognition 2001, 79:1–37. [Google Scholar]
  46. Bartolomei F, Naccache L: The global workspace (GW) theory of consciousness and epilepsy.Behav Neurol 2011, 24:67–74. [Google Scholar]
  47. Sergent C, Naccache L: Imaging neural signatures of consciousness: ‘What’, ‘When’, ‘Where’ and ‘How’ does it work?Archives italiennes de biologie 2012, 150:91–106. [Google Scholar]
  48. Bartolomei F: Coherent neural activity and brain synchronization during.Archives italiennes de biologie 2012, 150:164–171. [Google Scholar]
  49. Lambert I, Arthuis M, McGonigal A, Wendling F, Bartolomei F: Alteration of global workspace during loss of consciousness: a study of parietal seizures.Epilepsia 2012, 53:2104–2110. [Google Scholar]
  50. Bartolomei F, Trebuchon A, Gavaret M, Regis J, Wendling F, Chauvel P: Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks.Clin Neurophysiol 2005, 116:2473–2479. [Google Scholar]
  51. Vaugier L, Aubert S, McGonigal A, Trebuchon A, Guye M, Gavaret M, Regis J, Chauvel P, Wendling F, Bartolomei F: Neural networks underlying hyperkinetic seizures of “temporal lobe” origin.Epilepsy Res 2009, 86:200–208. [Google Scholar]
  52. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM: The midline thalamus: alterations and a potential role in limbic epilepsy.Epilepsia 2001, 42:967–978. [Google Scholar]
  53. Rosenberg DS, Mauguiere F, Demarquay G, Ryvlin P, Isnard J, Fischer C, Guenot M, Magnin M: Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures.Epilepsia 2006, 47:98–107. [Google Scholar]
  54. Topolnik L, Steriade M, Timofeev I: Partial cortical deafferentation promotes development of paroxysmal activity.Cereb Cortex 2003, 13:883–893. [Google Scholar]
  55. Schindler K, Leung H, Elger CE, Lehnertz K: Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG.Brain 2007, 130:65–77. [Google Scholar]
  56. Mormann F, Lehnertz K, David P, Elger CE: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients.Physica D 2000, 144:358–369. [Google Scholar]
  57. Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, McKhann G Jr, Weiner H, Doyle W, Kuzniecky R, et al.: Cortical abnormalities in epilepsy revealed by local EEG synchrony.Neuroimage 2007, 35:140–148. [Google Scholar]
  58. Bettus G, Wendling F, Guye M, Valton L, Regis J, Chauvel P, Bartolomei F: Enhanced EEG functional connectivity in mesial temporal lobe epilepsy.Epilepsy Res 2008, 81:58–68. [Google Scholar]
  59. Blumenfeld H, Rivera M, Vasquez JG, Shah A, Ismail D, Enev M, Zaveri HP: Neocortical and thalamic spread of amygdala kindled seizures.Epilepsia 2007, 48:254–262. [Google Scholar]
  60. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva JP, Bartolomei F, Guye M: Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms.Hum Brain Mapp 2009, 30:1580–1591. [Google Scholar]
  61. Bettus G, Bartolomei F, Confort-Gouny S, Guedj E, Chauvel P, Cozzone PJ, Ranjeva JP, Guye M: Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy.J Neurol Neurosurg Psychiatry 2010, 81:1147–1154. [Google Scholar]
  62. Bettus G, Ranjeva JP, Wendling F, Benar CG, Confort-Gouny S, Regis J, Chauvel P, Cozzone PJ, Lemieux L, Bartolomei F, Guye M: Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.PLoS One 2011, 6:e20071. [Google Scholar]
  63. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD: Functional connectivity networks are disrupted in left temporal lobe epilepsy.Ann Neurol 2006, 59:335–343. [Google Scholar]
  64. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Lu G, Chen H: Altered functional connectivity and small-world in mesial temporal lobe epilepsy.PLoS One 2010, 5:e8525. [Google Scholar]
  65. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, Wang Z, Li K, Chen H, Liu Y: Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy.Brain Res 2010, 1323:152–160. [Google Scholar]
  66. Vlooswijk MC, Jansen JF, Majoie HJ, Hofman PA, de Krom MC, Aldenkamp AP, Backes WH: Functional connectivity and language impairment in cryptogenic localization-related epilepsy.Neurology 2010, 75:395–402. [Google Scholar]
  67. Bonilha L, Edwards JC, Kinsman SL, Morgan PS, Fridriksson J, Rorden C, Rumboldt Z, Roberts DR, Eckert MA, Halford JJ: Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy.Epilepsia 2010, 51:519–528. [Google Scholar]
  68. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS: Abnormalities of language networks in temporal lobe epilepsy.Neuroimage 2007, 36:209–221. [Google Scholar]
  69. Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ, Symms MR, Boulby P, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS: Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy.Neuroimage 2008, 40:1755–1764. [Google Scholar]
  70. McDonald CR, Ahmadi ME, Hagler DJ, Tecoma ES, Iragui VJ, Gharapetian L, Dale AM, Halgren E: Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy.Neurology 2008, 71:1869–1876. [Google Scholar]
  71. Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, Bernasconi N: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy.Neuroimage 2008, 42:515–524. [Google Scholar]
  72. Bartolomei F, Wendling F, Chauvel P: The concept of an epileptogenic network in human partial epilepsies.Neurochirurgie 2008, 54:174–184. [Google Scholar]