Open Access
EPJ Nonlinear Biomed Phys
Volume 1, Number 1, December 2013
Article Number 4
Number of page(s) 16
Published online 24 June 2013
  1. Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K: Synchronization and desynchronization in epilepsy: controversies and hypotheses.J Physiol 2013, 591:787–797. [Google Scholar]
  2. Uhlhaas PJ, Singer W: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.Neuron 2006, 52:155–168. [Google Scholar]
  3. Wendling F, Chauvel P, Biraben A, Bartolomei F: From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy.Frontiers Syst Neurosci 2010, 4:154. [Google Scholar]
  4. Bartolomei F, Wendling F: Synchrony in neural networks underlying seizure generation in human partial epilepsies. In Coordinated activity in the brain: measurements and relevance to brain function and behavior. Edited by: Velazquez J, Wennberg R. New York: Springer; 2009:137–147. [Google Scholar]
  5. Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P, Bartolomei F: The role of corticothalamic coupling in human temporal lobe epilepsy.Brain 2006, 129:1917–1928. [Google Scholar]
  6. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F: Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization.Brain 2009, 132:2091–2101. [Google Scholar]
  7. Ponten S, Bartolomei F, Stam C: Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures.Clin Neurophysiol 2007. doi:10.1016/j.clinph.2006.12.002. [Google Scholar]
  8. Kramer MA, Kolaczyk ED, Kirsch HE: Emergent network topology at seizure onset in humans.Epilepsy Res 2008, 2–3:173–186. [Google Scholar]
  9. Rosenow F, Luders H: Presurgical evaluation of epilepsy.Brain 2001, 124:1683–1700. [Google Scholar]
  10. Bartolomei F, Chauvel P, Wendling F: Spatio-temporal dynamics of neuronal networks in partial epilepsy.Rev Neurol (Paris) 2005, 161:767–780. [Google Scholar]
  11. Wendling F, Badier J, Chauvel P, Coatrieux J: A method to quantify invariant information in depth-recorded epileptic seizures.Electroenceph Clin Neurophysiol 1997, 102:472–485. [Google Scholar]
  12. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS: Single-neuron dynamics in human focal epilepsy.Nat Neurosci 2011, 14:635–641. [Google Scholar]
  13. Bancaud J, Angelergues R, Bernouilli C, Bonis A, Bordas-Ferrer M, Bresson M, Buser P, Covello L, Morel P, Szikla G, et al.: Functional stereotaxic exploration (SEEG) of epilepsy.Electroencephalogr Clin Neurophysiol 1970, 28:85–86. [Google Scholar]
  14. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P: Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset.Brain 2003, 126:1449–1459. [Google Scholar]
  15. Alarcon G, Binnie CD, Elwes RD, Polkey CE: Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy.Electroencephalogr Clin Neurophysiol 1995, 94:326–337. [Google Scholar]
  16. Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, Clemenceau S, Baulac M, Miles R: Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy.Nat Neurosci 2011, 14:627–634. [Google Scholar]
  17. Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F: Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG.J Clin Neurophysiol 2005, 22:343–356. [Google Scholar]
  18. Gnatkovsky V, Librizzi L, Trombin F, de Curtis M: Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortexin vitro.Ann Neurol 2008, 64:674–686. [Google Scholar]
  19. Javidan M, Katz A, Tran T, Pacia S, Spencer D, Spencer S: Frequency characteristics of neocortical and hippocampal onset seizures.Epilepsia 1992,33(Suppl 3):58. [Google Scholar]
  20. Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P: Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy.Epilepsy Res 2004, 61:89–104. [Google Scholar]
  21. Bartolomei F, Chauvel P, Wendling F: Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG.Brain 2008, 131:1818–1830. [Google Scholar]
  22. Aubert S, Wendling F, Regis J, McGonigal A, Figarella-Branger D, Peragut JC, Girard N, Chauvel P, Bartolomei F: Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours.Brain 2009, 132:3072–3086. [Google Scholar]
  23. Brazier MA: Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations.Exp Neurol 1972, 36:263–272. [Google Scholar]
  24. Gotman J, Levtova V: Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study.Epilepsy Res 1996, 25:51–57. [Google Scholar]
  25. Le Van Quyen M, Adam C, Baulac M, Martinerie J, Varela F: Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures.Brain Res 1998, 792:24–40. [Google Scholar]
  26. Bartolomei F, Wendling F, Vignal J, Kochen S, Bellanger J, Badier J, Le Bouquin-Jeannes R, Chauvel P: Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography.Clin Neurophysiol 1999, 110:1741–1754. [Google Scholar]
  27. Wendling F, Ansari-Asl K, Bartolomei F, Senhadji L: From EEG signals to brain connectivity: a model-based evaluation of interdependence measures.J Neurosci Methods 2009,30(183):9–18. [Google Scholar]
  28. Bartolomei F, Wendling F, Bellanger J, Regis J, Chauvel P: Neural networks involved in temporal lobe seizures: a nonlinear regression analysis of SEEG signals interdependencies.Clin Neurophysiol 2001, 112:1746–1760. [Google Scholar]
  29. Wendling F, Bartolomei F: Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks.Epileptic Disord 2001, Special Issue:67–78. [Google Scholar]
  30. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH: Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.J Neurosci 2002, 22:1480–1495. [Google Scholar]
  31. Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva JP, Guye M, Chauvel P: Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study.Epilepsia 2005, 46:677–687. [Google Scholar]
  32. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P: Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG.Clin Neurophysiol 2001, 112:1201–1218. [Google Scholar]
  33. Netoff TI, Schiff SJ: Decreased neuronal synchronization during experimental seizures.J Neurosci 2002, 22:7297–7307. [Google Scholar]
  34. Cymerblit-Sabba A, Schiller Y: Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo.J Neurophysiol 2012, 107:1718–1730. [Google Scholar]
  35. Velazquez J, Guevara Erra R, Wennberg R, Dominguez L: Correlations of cellular activities in the nervous system: physiological and methodological considerations. In Coordinated activity in the brain: measurements and relevance to brain function and behavior. Edited by: Velazquez J, Wennberg R. New York: Springer; 2009:1–24. [Google Scholar]
  36. Varela F, Lachaux JP, Rodriguez E, Martinerie J: The brainweb: phase synchronization and large-scale integration.Nat Rev Neurosci 2001, 2:229–239. [Google Scholar]
  37. Stam CJ, van Straaten EC: The organization of physiological brain networks.Clin Neurophysiol 2012, 123:1067–1087. [Google Scholar]
  38. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R: Cognitive fitness of cost-efficient brain functional networks.Proc Natl Acad Sci U S A 2009, 106:11747–11752. [Google Scholar]
  39. Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E: Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy.Brain 1994, 117:71–90. [Google Scholar]
  40. Bartolomei F, Barbeau E, Gavaret M, Guye M, McGonigal A, Regis J, Chauvel P: Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories.Neurology 2004, 63:858–864. [Google Scholar]
  41. Barbeau E, Wendling F, Regis J, Duncan R, Poncet M, Chauvel P, Bartolomei F: Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas.Neuropsychologia 2005, 43:1329–1337. [Google Scholar]
  42. Bartolomei F, Barbeau EJ, Nguyen T, McGonigal A, Regis J, Chauvel P, Wendling F: Rhinal-hippocampal interactions during deja vu.Clin Neurophysiol 2012, 123:489–495. [Google Scholar]
  43. Bartolomei F, Wendling F, Vignal JP, Chauvel P, Liegeois-Chauvel C: Neural networks underlying epileptic humming.Epilepsia 2002, 43:1001–1012. [Google Scholar]
  44. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F: Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization.Brain 2009, 132:2091–2101. [Google Scholar]
  45. Dehaene S, Naccache L: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework.Cognition 2001, 79:1–37. [Google Scholar]
  46. Bartolomei F, Naccache L: The global workspace (GW) theory of consciousness and epilepsy.Behav Neurol 2011, 24:67–74. [Google Scholar]
  47. Sergent C, Naccache L: Imaging neural signatures of consciousness: ‘What’, ‘When’, ‘Where’ and ‘How’ does it work?Archives italiennes de biologie 2012, 150:91–106. [Google Scholar]
  48. Bartolomei F: Coherent neural activity and brain synchronization during.Archives italiennes de biologie 2012, 150:164–171. [Google Scholar]
  49. Lambert I, Arthuis M, McGonigal A, Wendling F, Bartolomei F: Alteration of global workspace during loss of consciousness: a study of parietal seizures.Epilepsia 2012, 53:2104–2110. [Google Scholar]
  50. Bartolomei F, Trebuchon A, Gavaret M, Regis J, Wendling F, Chauvel P: Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks.Clin Neurophysiol 2005, 116:2473–2479. [Google Scholar]
  51. Vaugier L, Aubert S, McGonigal A, Trebuchon A, Guye M, Gavaret M, Regis J, Chauvel P, Wendling F, Bartolomei F: Neural networks underlying hyperkinetic seizures of “temporal lobe” origin.Epilepsy Res 2009, 86:200–208. [Google Scholar]
  52. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM: The midline thalamus: alterations and a potential role in limbic epilepsy.Epilepsia 2001, 42:967–978. [Google Scholar]
  53. Rosenberg DS, Mauguiere F, Demarquay G, Ryvlin P, Isnard J, Fischer C, Guenot M, Magnin M: Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures.Epilepsia 2006, 47:98–107. [Google Scholar]
  54. Topolnik L, Steriade M, Timofeev I: Partial cortical deafferentation promotes development of paroxysmal activity.Cereb Cortex 2003, 13:883–893. [Google Scholar]
  55. Schindler K, Leung H, Elger CE, Lehnertz K: Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG.Brain 2007, 130:65–77. [Google Scholar]
  56. Mormann F, Lehnertz K, David P, Elger CE: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients.Physica D 2000, 144:358–369. [Google Scholar]
  57. Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, McKhann G Jr, Weiner H, Doyle W, Kuzniecky R, et al.: Cortical abnormalities in epilepsy revealed by local EEG synchrony.Neuroimage 2007, 35:140–148. [Google Scholar]
  58. Bettus G, Wendling F, Guye M, Valton L, Regis J, Chauvel P, Bartolomei F: Enhanced EEG functional connectivity in mesial temporal lobe epilepsy.Epilepsy Res 2008, 81:58–68. [Google Scholar]
  59. Blumenfeld H, Rivera M, Vasquez JG, Shah A, Ismail D, Enev M, Zaveri HP: Neocortical and thalamic spread of amygdala kindled seizures.Epilepsia 2007, 48:254–262. [Google Scholar]
  60. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva JP, Bartolomei F, Guye M: Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms.Hum Brain Mapp 2009, 30:1580–1591. [Google Scholar]
  61. Bettus G, Bartolomei F, Confort-Gouny S, Guedj E, Chauvel P, Cozzone PJ, Ranjeva JP, Guye M: Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy.J Neurol Neurosurg Psychiatry 2010, 81:1147–1154. [Google Scholar]
  62. Bettus G, Ranjeva JP, Wendling F, Benar CG, Confort-Gouny S, Regis J, Chauvel P, Cozzone PJ, Lemieux L, Bartolomei F, Guye M: Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.PLoS One 2011, 6:e20071. [Google Scholar]
  63. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD: Functional connectivity networks are disrupted in left temporal lobe epilepsy.Ann Neurol 2006, 59:335–343. [Google Scholar]
  64. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Lu G, Chen H: Altered functional connectivity and small-world in mesial temporal lobe epilepsy.PLoS One 2010, 5:e8525. [Google Scholar]
  65. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, Wang Z, Li K, Chen H, Liu Y: Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy.Brain Res 2010, 1323:152–160. [Google Scholar]
  66. Vlooswijk MC, Jansen JF, Majoie HJ, Hofman PA, de Krom MC, Aldenkamp AP, Backes WH: Functional connectivity and language impairment in cryptogenic localization-related epilepsy.Neurology 2010, 75:395–402. [Google Scholar]
  67. Bonilha L, Edwards JC, Kinsman SL, Morgan PS, Fridriksson J, Rorden C, Rumboldt Z, Roberts DR, Eckert MA, Halford JJ: Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy.Epilepsia 2010, 51:519–528. [Google Scholar]
  68. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS: Abnormalities of language networks in temporal lobe epilepsy.Neuroimage 2007, 36:209–221. [Google Scholar]
  69. Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ, Symms MR, Boulby P, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS: Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy.Neuroimage 2008, 40:1755–1764. [Google Scholar]
  70. McDonald CR, Ahmadi ME, Hagler DJ, Tecoma ES, Iragui VJ, Gharapetian L, Dale AM, Halgren E: Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy.Neurology 2008, 71:1869–1876. [Google Scholar]
  71. Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, Bernasconi N: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy.Neuroimage 2008, 42:515–524. [Google Scholar]
  72. Bartolomei F, Wendling F, Chauvel P: The concept of an epileptogenic network in human partial epilepsies.Neurochirurgie 2008, 54:174–184. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.