EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Advances in Neural Population Models and Their Networks
Article Number 6
Number of page(s) 17
Published online 12 May 2014
  1. Izhikevich EM: Simple model of spiking neurons.IEEE Trans Neural Netw 2003, 14:1569–1572. [Google Scholar]
  2. Izhikevich EM: Dynamical Systems in Neuroscience. Cambridge: The MIT press; 2007. [Google Scholar]
  3. Touboul J: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons.M J Appl Math 2008,68(4):1045–1079. [Google Scholar]
  4. Touboul J, Brette R: Spiking dynamics of bidimensional integrate-and-fire neurons.SIAM J Appl Dyn Syst 2009,8(4):1462–1506. [Google Scholar]
  5. Shlizerman E, Holmes P: Neural dynamics, bifurcations, and firing rates in a quadratic integrate-and-fire model with a recovery variable. i: Deterministic behavior.Neural Comput 2012,24(8):2078–2118. [Google Scholar]
  6. Wilson HR, Cowan JD: Excitatory and inhibitory interactions in localized populations of model neurons.Biophys J 1972,12(1):1–24. [Google Scholar]
  7. Wilson HR, Cowan JD: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Biol Cybern 1973,13(2):55–80. [Google Scholar]
  8. Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH: Model of brain rhythmic activity.Biol Cybern 1974, 15:27–37. doi:10.1007/BF00270757. [Google Scholar]
  9. Freeman WJ: Mass Action in the Nervous System. New York: Academic Press; 1975. [Google Scholar]
  10. Amari S: Dynamics of pattern formation in lateral-inhibition type neural fields.Biol Cybern 1977,27(2):77–87. [Google Scholar]
  11. Omurtag A, Knight BW, Sirovich L: On the simulation of large populations of neurons.J Comput Neurosci 2000,8(1):51–63. [Google Scholar]
  12. Nykamp DQ, Tranchina D: A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning.J Comput Neurosci 2000,8(1):19–50. [Google Scholar]
  13. Abbott L, van Vreeswijk C: Asynchronous states in networks of pulse-coupled oscillators.Phys Rev E 1993,48(2):1483. [Google Scholar]
  14. Ly C, Tranchina D: Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling.Neural Comput 2007,19(8):2032–2092. [Google Scholar]
  15. Nicola W, Campbell SA: Bifurcations of large networks of two-dimensional integrate and fire neurons.J Comput Neurosci 2013,35(1):87–108. [Google Scholar]
  16. Dhooge A, Govaerts W, Kuznetsov YA: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs.ACM Trans Math Softw 2003,29(2):141–164. [Google Scholar]
  17. Bressloff PC: Spatiotemporal dynamics of continuum neural fields.J Phys A Math Theor 2011,45(3):033001. [Google Scholar]
  18. FitzHugh R: Impulses and physiological states in theoretical models of nerve membrane.Biophys J 1961,1(6):445–466. [Google Scholar]
  19. Nagumo J, Arimoto S, Yoshizawa S: An active pulse transmission line simulating nerve axon.Proc IRE 1962,50(10):2061–2070. [Google Scholar]
  20. Morris C, Lecar H: Voltage oscillations in the barnacle giant muscle fiber.Biophys J 1981,35(1):193–213. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.