EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Advances in Neural Population Models and Their Networks
Article Number 3
Number of page(s) 18
Published online 06 March 2014
  1. Hodgkin AL, Huxley AF: A quantitative description of membrane and its application to conduction and excitation in nerve.J Physiol 1952, 117:500–544.139241312991237 [Google Scholar]
  2. Rinzel J: Electrical excitability of cells, theory and experiment: review of the Hodgkin-Huxley foundation and an update.Bull Math Biol 1990, 52:3–23.10.1007/BF02459567 [Google Scholar]
  3. Carpenter G: Traveling wave solutions of nerve impulse equations.PhD thesis. University of Wisconsin, Madison; 1974 [Google Scholar]
  4. Evans J: Nerve axon equations: IV The stable and unstable impulse.Indiana University Math J 1975, 24:1169–1190.10.1512/iumj.1975.24.24096 [Google Scholar]
  5. Miller RN, Rinzel J: The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model.Biophys J 1981, 34:227–259.10.1016/S0006-3495(81)84847-313274697236850 [Google Scholar]
  6. Steriade M, Jones EG, Línas RR: Thalamic Oscillations and Signalling. New York: Wiley; 1990. [Google Scholar]
  7. Connors BW, Amitai Y: Generation of epileptiform discharges by local circuits in neocortex. In Epilepsy: Models, Mechanisms and Concepts. Edited by: Schwartzkroin PA. Cambridge: Cambridge University Press; 1993:388–424. [Google Scholar]
  8. Ermentrout GB, Kleinfeld D: Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role.Neuron 2001, 29:33–44.10.1016/S0896-6273(01)00178-711182079 [Google Scholar]
  9. Coombes S: Waves, bumps, and patterns in neural field theories.Biol Cybernetics 2005, 93:91–108.10.1007/s00422-005-0574-y [Google Scholar]
  10. Bressloff PC: Spatiotemporal dynamics of continuum neural fields.J Phys A 2012, 45:033001.10.1088/1751-8113/45/3/033001 [Google Scholar]
  11. Liley DTJ, Cadusch PJ, Dafilis MP: A spatially continuous mean field theory of electrocortical activity.Network: Comput Neural Syst 2002,13(1):67–113.10.1080/net. [Google Scholar]
  12. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis.Cerebral Cortex 2006, 16:1296–1313.16280462 [Google Scholar]
  13. Goodfellow M, Schindler K, Baier G: Self-organised transients in a neural mass model of epileptogenic tissue dynamics.NeuroImage 2011, 55:920–932.10.1016/j.neuroimage.2010.12.07421195779 [Google Scholar]
  14. Curtu R, Ermentrout B: Pattern formation in a network of excitatory and inhibitory cells with adaptation.SIAM J Appl Dynamical Syst 2004, 3:191–231.10.1137/030600503 [Google Scholar]
  15. Venkov NA, Coombes S, Matthews PC: Dynamic instabilities in scalar neural field equations with space-dependent delays.Physica D 2007, 232:1–15.10.1016/j.physd.2007.04.011 [Google Scholar]
  16. Coombes S: Large-scale neural dynamics: simple and complex.NeuroImage 2010, 52:731–739.10.1016/j.neuroimage.2010.01.04520096791 [Google Scholar]
  17. Nunez PL: The brain wave equation: a model for the EEG.Math Biosci 1974, 21:279–297.10.1016/0025-5564(74)90020-0 [Google Scholar]
  18. Jirsa V K Haken H: Field theory of electromagnetic brain activity.Phys Rev Lett 1996, 77:960–963.10.1103/PhysRevLett.77.96010062950 [Google Scholar]
  19. Benda J, Herz AVM: A universal model for spike-frequency adaptation.Neural Comput 2003, 15:2523–2564.10.1162/08997660332238506314577853 [Google Scholar]
  20. Coombes S, Laing CR: Delays in activity based neural networks.Philos Trans R Soc A 2009, 367:1117–1129.10.1098/rsta.2008.0256 [Google Scholar]
  21. Sandstede B: Evans functions and nonlinear stability of travelling waves in neuronal network models.Int J Bifurcation and Chaos 2007, 17:2693–2704.10.1142/S0218127407018695 [Google Scholar]
  22. Coombes S, Lord GJ, Owen MR: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions.Physica D 2003, 178:219–241.10.1016/S0167-2789(03)00002-2 [Google Scholar]
  23. Coombes S, Owen MR: Evans functions for integral neural field equations with Heaviside firing rate function.SIAM J Appl Dynamical Syst 2004, 3:574–600.10.1137/040605953 [Google Scholar]
  24. Bressloff PC, Folias SE: Front bifurcations in an excitatory neural network.SIAM J Appl Dynamical Syst 2004, 65:131–151. [Google Scholar]
  25. Laing CR, Troy WC: PDE methods for nonlocal models.SIAM J Appl Dyn Syst 2003, 2:487–516.10.1137/030600040 [Google Scholar]
  26. Laing C: Spiral waves in nonlocal equations.SIAM J Appl Dynamical Syst 2005,4(3):588–606.10.1137/040612890 [Google Scholar]
  27. Shusterman V, Troy WC: From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks.Phys Rev E 2008, 77:061911. [Google Scholar]
  28. Steyn-Ross ML, Steyn-Ross DA, Sleigh JW: Interacting Turing-Hopf instabilities drive symmetry-breaking transitions in a mean-field model of the cortex: a mechanism for the slow oscillation.Phys Rev X 2013, 3:021005. [Google Scholar]
  29. Jirsa VK, Haken H: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics.Physica D 1997, 99:503–526.10.1016/S0167-2789(96)00166-2 [Google Scholar]
  30. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B: New features of the software MatCont for bifurcation analysis of dynamical systems.Math Comput Modell Dynamical Syst 2008,14(2):147–175.10.1080/13873950701742754 [Google Scholar]
  31. Meijer HGE, Coombes S: Travelling waves in a neural field model with refractoriness.J Math Biol 2014,68(5):1249–1268. online first, DOI:10.1007/s00285–013–0670-x10.1007/s00285-013-0670-x394861623546637 [Google Scholar]
  32. Rankin J, Avitabile D, Baladron J, Faye G, Lloyd DJ: Continuation of localised coherent structures in nonlocal neural field equations.SIAM J Sci Comput36–1(2014):B70-B93, arXiv:1304.7206. [Google Scholar]
  33. Kuznetsov YA: Impulses of a complicated form in models of nerve conduction.Selecta Mathematica (formerly Sovietica) 1994, 13:127–142. [Google Scholar]
  34. Champneys AR, Kirk V, Knobloch E, Oldeman BE, Sneyd J: When Shilnikov meets Hopf in excitable systems.SIAM J Appl Dynamical Syst 2007, 6:663–693.10.1137/070682654 [Google Scholar]
  35. Röder G, Bordyugov G, Engel H, Falcke M: Wave trains in an excitable FitzHugh-Nagumo model: bistable dispersion relation and formation of isolas.Phys Rev E 2007, 75:036202. [Google Scholar]
  36. Guckenheimer J, Kuehn C: Homoclinic orbits of the Fitz Hugh-Nagumo equation: bifurcations in the full system.SIAM J Appl Dynamical Syst 2010,9(1):138–153.10.1137/090758404 [Google Scholar]
  37. Keener J, Sneyd J: Mathematical Physiology. New York: Springer; 1998. [Google Scholar]
  38. Kuznetsov YA: Elements of Applied Bifurcation Theory, 3rd edition. New York: Springer; 2004. [Google Scholar]
  39. Homburg AJ, Sandstede B: Homoclinic and heteroclinic bifurcations in vector fields. In Handbook of Dynamical Systems. Volume III, Chap. 8. Edited by: Broer H, Takens F, Hasselblatt B. Amsterdam: Elevier; 2010:379–524. [Google Scholar]
  40. Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR: Onset of poly-spike complexes in a mean-field model of human EEG and its application to absence epilepsy.Philos Trans R Soc A 2009, 367:1145–1161.10.1098/rsta.2008.0255 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.