EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Systems Biology and Spatiotemporal Patterns
Article Number 1
Number of page(s) 18
Published online 30 January 2014
  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell. New York: Garland Science; 2002. [Google Scholar]
  2. Kholodenko BN, Hancock JF, Kolch W: Signalling ballet in space and time.Nat Rev Mol Cell Biol 2010, 11:414–426. [Google Scholar]
  3. Kholodenko BN: Cell-signalling dynamics in time and space.Nat Rev Mol Cell Biol 2006, 7:165–176. [Google Scholar]
  4. McLaughlin S, Wang J, Gambhir A, Murray D: The electrostatic properties of membranes.Annu Rev Biophys Biomol Struct 2002, 31:151–175. [Google Scholar]
  5. Kalwa H, Michel T: The MARCKS protein plays a critical role in Phosphatidylinositol 4,5-Bisphosphate metabolism and directed cell movement in vascular endothelial cells.J Biol Chem 2011, 286:2320–2330. [Google Scholar]
  6. Allen LH, Aderem A: A role for MARCKS, the isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages.J Exp Med 1995, 182:829–840. [Google Scholar]
  7. Salli U, Saito N, Stormshak F: Spatiotemporal interactions of Myristoylated alanine-rich C kinase substrate (MARCKS) protein with the actin cytoskeleton and exocytosis of oxytocin upon prostaglandin F2a stimulation of bovine luteal cells.Biol Repro 2003, 69:2053–2058. [Google Scholar]
  8. Miller JD, Lankford SM, Adler KB, Brody AR: Mesenchymal stem cells require MARCKS protein for directed chemotaxis in vitro.Am J Respir Cell Mol Biol 2010, 43:253–258. [Google Scholar]
  9. Thelen M, Rosen A, Nairn AC, Anderem A: Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane.Nature (London) 1991, 351:320–322. [Google Scholar]
  10. Goldbeter A, Koshland DE: An amplified sensitivity arising from covalent modification in biological systems.Proc Nati Acad Sci USA 1981, 78:6840–6844. [Google Scholar]
  11. Keener J, Sneyd J: Mathematical Physiology. New York: Springer; 2009. [Google Scholar]
  12. Arbuzova A, Wang J, Murray D, Jacob J, Cafiso DS, McLaughlin S: Kinetics of interaction of the Myristoylated alanine-rich C kinase substrate, membranes, and calmodulin.J Biol Chem 1997, 272:27167–21177. [Google Scholar]
  13. Wang J, Gambhir A, Mihalyne G, Murray D, Golebiewska U, McLaughlin S: Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of Myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions.J Biol Chem 2002, 277:34401–34412. [Google Scholar]
  14. Rusu L, Gambhir A, McLaughlin S, Rädler J: Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles.Biophys J 2004, 87:1044–1053. [Google Scholar]
  15. Verghese GM, Johnson JD, Vasulka C, Haupt DM, Stumpo DJ, Blackshear PJ: Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein.J Biol Chem 1994, 269:9361–9367. [Google Scholar]
  16. Blackshear PJ, Verghese GM, Johnson JD, Haupt DM, Stumpo DJ: Characteristics of the F52 protein, a MARCKS homologue.J Biol Chem 1992, 267:13540–13546. [Google Scholar]
  17. Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderemi A, Ahni J, McLaughlin S: Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-Bisphosphate in lateral domains.J Biol Chem 1996, 271:26187–26193. [Google Scholar]
  18. Rebecchi M, Boguslavsky V, Boguslavsky L, McLaughlin S: Phosphoinositide-specific phospholipase C-δ1: effect of monolayer surface pressure and electrostatic surface potentials on activity.Biochemistry 1992, 31:12748–12753. [Google Scholar]
  19. Wang J, Arbuzova A, Hangyás-Mihályné G, McLaughlin S: The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-Bisphosphate.J Biol Chem 2001, 276:5012–5019. [Google Scholar]
  20. Dietrich U, Krüger P, Gutberlet T, Käs JA: Interaction of the MARCKS peptide with PIP2 in phospholipid monolayers.Biochim Biophys Acta 2009, 557:1474–1481. [Google Scholar]
  21. Alonso S, Dietrich U, Händel C, Käs JA, Bär M: Oscillations in the lateral pressure of lipid monolayers induced by nonlinear chemical dynamics of the second messengers MARCKS and protein kinase C.Biophysical J 2011, 100:939–947. [Google Scholar]
  22. Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N, Saito N: Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate.J Biol Chem 2000, 275:26449–26457. [Google Scholar]
  23. Mogami H, Zhang H, Suzuki Y, Urano T, Saito N, Kojima I, Petersen OH: Decoding of short-lived Ca2 influx signals into long term substrate phosphorylation through activation of two distinct classes of protein kinase C.J Biol Chem 2003, 278:9896–9904. [Google Scholar]
  24. Uchino M, Sakai N, Kashiwagi K, Shirai Y, Shinohara Y, Hirose K, Iino M, Yamamura T, Saito N: Isoform-specific phosphorylation of metabotropic glutamate receptor 5 by Protein Kinase C (PKC) blocks Ca2 oscillation and oscillatory translocation of Ca2-dependent PKC.J Biol Chem 2004, 279:2254–2261. [Google Scholar]
  25. Sawano A, Hama H, Saito N, Miyawaki A: Multicolor imaging of Ca2 and protein kinase C signals using novel epifluorescence microscopy.Biophys J 2002, 82:1076–1085. [Google Scholar]
  26. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P: GAP43, MARCKS, and CAP23 Modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism.J Cell Biol 2000, 149:1455–1472. [Google Scholar]
  27. Gallant C, You JY, Sasaki Y, Grabarek Z, Morgans KG: MARCKS is a major PKC-dependent regulator of calmodulin targeting in smooth muscle.J Cell Sci 2005, 118:3595–3605. [Google Scholar]
  28. John K, Bär M: Alternative mechanisms of structuring biomembranes: self-assembly versus self-organization.Phys Rev Lett 2005, 95:198101. [Google Scholar]
  29. Alonso S, Bär M: Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes.Phys Biol 2010, 7:046012. [Google Scholar]
  30. John K, Bär M: Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes.Phys Biol 2005, 2:123–132. [Google Scholar]
  31. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S: A mass conserved reaction-diffusion system captures properties of cell polarity.PLoS Comput Biol 2007, 3:1040–54. [Google Scholar]
  32. Mori Y, Jilkine A, Edelstein-Keshet L: Wave-pinning and cell polarity from a bistable reaction-diffusion system.Biophys J 2008, 94:3684–3697. [Google Scholar]
  33. Jilkine A, Edelstein-Keshet L: A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cuess.PLoS Comput Biol 2011, 7:e1001121. [Google Scholar]
  34. Goryachev AB, Pokhilko AV: Dynamics of Cdc42 network embodies a turing-type mechanism of yeast cell polarity.FEBS Lett 2008, 582:1437–1443. [Google Scholar]
  35. Meinhardt H, de Boer PAJ: Pattern formation in escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site.Proc Natl Acad Sci USA 2001, 98:14202. [Google Scholar]
  36. Howard M, Rutenberg AD, de Vet S: Dynamic compartmentalization of bacteria: accurate division in.E. Coli. Phys Rev Lett 2001, 87:278102. [Google Scholar]
  37. Howard M, Kruse K: Cellular organization by self-organization: mechanisms and models for Min protein dynamics.J Cell Biol 2005, 168:533–36. [Google Scholar]
  38. Newton AC, Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions.Chem Rev 2001, 101:2353–2364. [Google Scholar]
  39. Clarke PR, Siddhanti SR, Cohen P, Blackshear PJ: Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate.FEBS Lett 1993, 336:37–42. [Google Scholar]
  40. Straube R, Conradi C: Reciprocal enzyme regulation as a source of bistability in covalent modification cycles.J Theor Biol 2013, 330:56–74. [Google Scholar]
  41. Weiss M, Elsner M, Kartberg F, Nilsson T: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.Biophys J 2004, 87:3518–3524. [Google Scholar]
  42. Brown GC, Kholodenko BN: Spatial gradients of cellular phospho-proteins.FEBS Lett 1999, 457:452–454. [Google Scholar]
  43. Luby-Phelps K: Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.Int Rev Cytol 1997, 192:189–221. [Google Scholar]
  44. Arrio-Dupont M: Mobility of creatine phosphokinase andβ-Enolase in cultured muscle cells.Biophys J 1997, 73:2667–2673. [Google Scholar]
  45. Bhat NR: Phosphorylation of MARCKS (8O-kDa) protein, a major substrate for protein kinase C in oligodendroglial progenitors.J Neurosci Res 1991, 308:447–454. [Google Scholar]
  46. Edidin M, Zagyansky Y, Lardner TJ: Measurement of membrane protein lateral diffusion in single cells.Science 1976, 191:466–468. [Google Scholar]
  47. Valdez-taubas J, Pelham RB: Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling.Curr Biol 2003, 13:1636–1640. [Google Scholar]
  48. Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M: Hybrid stochastic and deterministic simulations of calcium blips.Biophys J 2007, 93:1847–1857. [Google Scholar]
  49. Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways.Science 1999, 283:381–387. [Google Scholar]
  50. Bhalla US: Signaling in small subcellular volumes. I. stochastic and diffusion effects on individual pathways.Biophys J 2004, 87:733–744. [Google Scholar]
  51. Ozawa K, Szallasie Z, Kazanietzs MG, Blumberge PM, Mischakll H, Mushinskill JF, Beaven MA: Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells.J Biol Chem 1993, 268:1749–1756. [Google Scholar]
  52. Kang M, Othmer HG: The variety of cytosolic calcium responses and possibles roles of PLC and PKC.Phys Biol 2007, 4:325–343. [Google Scholar]
  53. Nalefski EA, Newton AC: Membrane binding kinetics of protein kinase C II mediated by the C2 domain.Biochemistry 2001, 40:13216–13229. [Google Scholar]
  54. Mosior M, Golini ES, Epand RM: Chemical specificity and physical properties of the lipid bilayer in the regulation of protein kinase C by anionic phospholipids: Evidence for the lack of a specific binding site for phosphatidylserine.Proc Natl Acad Sci USA 1996, 93:1907–1912. [Google Scholar]
  55. Newton AC: Lipid activation of protein kinases.J Lipid Res 2009, 50:S266-S271. [Google Scholar]
  56. Allbritton NL, Meyer T, Stryer L: Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate.Science 1992, 258:1812–1815. [Google Scholar]
  57. Harauz G, Ishiyama N, Bates IR: Analogous structural motifs in myelin basic protein and in MARCKS.Mol Cell Biochem 2000, 209:155–63. [Google Scholar]
  58. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave K-A, Simons M: Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium.J Neurosci 2009, 29:4794–4807. [Google Scholar]
  59. Tostevin F, Howard M: Modeling the establishment of PAR protein polarity in the one-cell C. elegans embryo.Biophys J 2008, 95:4512–4522. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.