EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Systems Biology and Spatiotemporal Patterns
Article Number 1
Number of page(s) 18
Published online 30 January 2014
  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell. New York: Garland Science; 2002. [Google Scholar]
  2. Kholodenko BN, Hancock JF, Kolch W: Signalling ballet in space and time.Nat Rev Mol Cell Biol 2010, 11:414–426. [Google Scholar]
  3. Kholodenko BN: Cell-signalling dynamics in time and space.Nat Rev Mol Cell Biol 2006, 7:165–176. [Google Scholar]
  4. McLaughlin S, Wang J, Gambhir A, Murray D: The electrostatic properties of membranes.Annu Rev Biophys Biomol Struct 2002, 31:151–175. [Google Scholar]
  5. Kalwa H, Michel T: The MARCKS protein plays a critical role in Phosphatidylinositol 4,5-Bisphosphate metabolism and directed cell movement in vascular endothelial cells.J Biol Chem 2011, 286:2320–2330. [Google Scholar]
  6. Allen LH, Aderem A: A role for MARCKS, the isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages.J Exp Med 1995, 182:829–840. [Google Scholar]
  7. Salli U, Saito N, Stormshak F: Spatiotemporal interactions of Myristoylated alanine-rich C kinase substrate (MARCKS) protein with the actin cytoskeleton and exocytosis of oxytocin upon prostaglandin F2a stimulation of bovine luteal cells.Biol Repro 2003, 69:2053–2058. [Google Scholar]
  8. Miller JD, Lankford SM, Adler KB, Brody AR: Mesenchymal stem cells require MARCKS protein for directed chemotaxis in vitro.Am J Respir Cell Mol Biol 2010, 43:253–258. [Google Scholar]
  9. Thelen M, Rosen A, Nairn AC, Anderem A: Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane.Nature (London) 1991, 351:320–322. [Google Scholar]
  10. Goldbeter A, Koshland DE: An amplified sensitivity arising from covalent modification in biological systems.Proc Nati Acad Sci USA 1981, 78:6840–6844. [Google Scholar]
  11. Keener J, Sneyd J: Mathematical Physiology. New York: Springer; 2009. [Google Scholar]
  12. Arbuzova A, Wang J, Murray D, Jacob J, Cafiso DS, McLaughlin S: Kinetics of interaction of the Myristoylated alanine-rich C kinase substrate, membranes, and calmodulin.J Biol Chem 1997, 272:27167–21177. [Google Scholar]
  13. Wang J, Gambhir A, Mihalyne G, Murray D, Golebiewska U, McLaughlin S: Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of Myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions.J Biol Chem 2002, 277:34401–34412. [Google Scholar]
  14. Rusu L, Gambhir A, McLaughlin S, Rädler J: Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles.Biophys J 2004, 87:1044–1053. [Google Scholar]
  15. Verghese GM, Johnson JD, Vasulka C, Haupt DM, Stumpo DJ, Blackshear PJ: Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein.J Biol Chem 1994, 269:9361–9367. [Google Scholar]
  16. Blackshear PJ, Verghese GM, Johnson JD, Haupt DM, Stumpo DJ: Characteristics of the F52 protein, a MARCKS homologue.J Biol Chem 1992, 267:13540–13546. [Google Scholar]
  17. Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderemi A, Ahni J, McLaughlin S: Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-Bisphosphate in lateral domains.J Biol Chem 1996, 271:26187–26193. [Google Scholar]
  18. Rebecchi M, Boguslavsky V, Boguslavsky L, McLaughlin S: Phosphoinositide-specific phospholipase C-δ1: effect of monolayer surface pressure and electrostatic surface potentials on activity.Biochemistry 1992, 31:12748–12753. [Google Scholar]
  19. Wang J, Arbuzova A, Hangyás-Mihályné G, McLaughlin S: The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-Bisphosphate.J Biol Chem 2001, 276:5012–5019. [Google Scholar]
  20. Dietrich U, Krüger P, Gutberlet T, Käs JA: Interaction of the MARCKS peptide with PIP2 in phospholipid monolayers.Biochim Biophys Acta 2009, 557:1474–1481. [Google Scholar]
  21. Alonso S, Dietrich U, Händel C, Käs JA, Bär M: Oscillations in the lateral pressure of lipid monolayers induced by nonlinear chemical dynamics of the second messengers MARCKS and protein kinase C.Biophysical J 2011, 100:939–947. [Google Scholar]
  22. Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N, Saito N: Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate.J Biol Chem 2000, 275:26449–26457. [Google Scholar]
  23. Mogami H, Zhang H, Suzuki Y, Urano T, Saito N, Kojima I, Petersen OH: Decoding of short-lived Ca2 influx signals into long term substrate phosphorylation through activation of two distinct classes of protein kinase C.J Biol Chem 2003, 278:9896–9904. [Google Scholar]
  24. Uchino M, Sakai N, Kashiwagi K, Shirai Y, Shinohara Y, Hirose K, Iino M, Yamamura T, Saito N: Isoform-specific phosphorylation of metabotropic glutamate receptor 5 by Protein Kinase C (PKC) blocks Ca2 oscillation and oscillatory translocation of Ca2-dependent PKC.J Biol Chem 2004, 279:2254–2261. [Google Scholar]
  25. Sawano A, Hama H, Saito N, Miyawaki A: Multicolor imaging of Ca2 and protein kinase C signals using novel epifluorescence microscopy.Biophys J 2002, 82:1076–1085. [Google Scholar]
  26. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P: GAP43, MARCKS, and CAP23 Modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism.J Cell Biol 2000, 149:1455–1472. [Google Scholar]
  27. Gallant C, You JY, Sasaki Y, Grabarek Z, Morgans KG: MARCKS is a major PKC-dependent regulator of calmodulin targeting in smooth muscle.J Cell Sci 2005, 118:3595–3605. [Google Scholar]
  28. John K, Bär M: Alternative mechanisms of structuring biomembranes: self-assembly versus self-organization.Phys Rev Lett 2005, 95:198101. [Google Scholar]
  29. Alonso S, Bär M: Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes.Phys Biol 2010, 7:046012. [Google Scholar]
  30. John K, Bär M: Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes.Phys Biol 2005, 2:123–132. [Google Scholar]
  31. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S: A mass conserved reaction-diffusion system captures properties of cell polarity.PLoS Comput Biol 2007, 3:1040–54. [Google Scholar]
  32. Mori Y, Jilkine A, Edelstein-Keshet L: Wave-pinning and cell polarity from a bistable reaction-diffusion system.Biophys J 2008, 94:3684–3697. [Google Scholar]
  33. Jilkine A, Edelstein-Keshet L: A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cuess.PLoS Comput Biol 2011, 7:e1001121. [Google Scholar]
  34. Goryachev AB, Pokhilko AV: Dynamics of Cdc42 network embodies a turing-type mechanism of yeast cell polarity.FEBS Lett 2008, 582:1437–1443. [Google Scholar]
  35. Meinhardt H, de Boer PAJ: Pattern formation in escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site.Proc Natl Acad Sci USA 2001, 98:14202. [Google Scholar]
  36. Howard M, Rutenberg AD, de Vet S: Dynamic compartmentalization of bacteria: accurate division in.E. Coli. Phys Rev Lett 2001, 87:278102. [Google Scholar]
  37. Howard M, Kruse K: Cellular organization by self-organization: mechanisms and models for Min protein dynamics.J Cell Biol 2005, 168:533–36. [Google Scholar]
  38. Newton AC, Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions.Chem Rev 2001, 101:2353–2364. [Google Scholar]
  39. Clarke PR, Siddhanti SR, Cohen P, Blackshear PJ: Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate.FEBS Lett 1993, 336:37–42. [Google Scholar]
  40. Straube R, Conradi C: Reciprocal enzyme regulation as a source of bistability in covalent modification cycles.J Theor Biol 2013, 330:56–74. [Google Scholar]
  41. Weiss M, Elsner M, Kartberg F, Nilsson T: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.Biophys J 2004, 87:3518–3524. [Google Scholar]
  42. Brown GC, Kholodenko BN: Spatial gradients of cellular phospho-proteins.FEBS Lett 1999, 457:452–454. [Google Scholar]
  43. Luby-Phelps K: Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.Int Rev Cytol 1997, 192:189–221. [Google Scholar]
  44. Arrio-Dupont M: Mobility of creatine phosphokinase andβ-Enolase in cultured muscle cells.Biophys J 1997, 73:2667–2673. [Google Scholar]
  45. Bhat NR: Phosphorylation of MARCKS (8O-kDa) protein, a major substrate for protein kinase C in oligodendroglial progenitors.J Neurosci Res 1991, 308:447–454. [Google Scholar]
  46. Edidin M, Zagyansky Y, Lardner TJ: Measurement of membrane protein lateral diffusion in single cells.Science 1976, 191:466–468. [Google Scholar]
  47. Valdez-taubas J, Pelham RB: Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling.Curr Biol 2003, 13:1636–1640. [Google Scholar]
  48. Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M: Hybrid stochastic and deterministic simulations of calcium blips.Biophys J 2007, 93:1847–1857. [Google Scholar]
  49. Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways.Science 1999, 283:381–387. [Google Scholar]
  50. Bhalla US: Signaling in small subcellular volumes. I. stochastic and diffusion effects on individual pathways.Biophys J 2004, 87:733–744. [Google Scholar]
  51. Ozawa K, Szallasie Z, Kazanietzs MG, Blumberge PM, Mischakll H, Mushinskill JF, Beaven MA: Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells.J Biol Chem 1993, 268:1749–1756. [Google Scholar]
  52. Kang M, Othmer HG: The variety of cytosolic calcium responses and possibles roles of PLC and PKC.Phys Biol 2007, 4:325–343. [Google Scholar]
  53. Nalefski EA, Newton AC: Membrane binding kinetics of protein kinase C II mediated by the C2 domain.Biochemistry 2001, 40:13216–13229. [Google Scholar]
  54. Mosior M, Golini ES, Epand RM: Chemical specificity and physical properties of the lipid bilayer in the regulation of protein kinase C by anionic phospholipids: Evidence for the lack of a specific binding site for phosphatidylserine.Proc Natl Acad Sci USA 1996, 93:1907–1912. [Google Scholar]
  55. Newton AC: Lipid activation of protein kinases.J Lipid Res 2009, 50:S266-S271. [Google Scholar]
  56. Allbritton NL, Meyer T, Stryer L: Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate.Science 1992, 258:1812–1815. [Google Scholar]
  57. Harauz G, Ishiyama N, Bates IR: Analogous structural motifs in myelin basic protein and in MARCKS.Mol Cell Biochem 2000, 209:155–63. [Google Scholar]
  58. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave K-A, Simons M: Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium.J Neurosci 2009, 29:4794–4807. [Google Scholar]
  59. Tostevin F, Howard M: Modeling the establishment of PAR protein polarity in the one-cell C. elegans embryo.Biophys J 2008, 95:4512–4522. [Google Scholar]