Open Access
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Article Number 14
Number of page(s) 13
Published online 22 November 2014
  1. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Math Phys Sci1971, 454:903–995. [Google Scholar]
  2. Blakely CD: A fast Empirical Mode Decomposition technique for nonstationary nonliear time series. In Center for Scientific Computation and Mathematical Modeling. College Park, USA: University of Maryland. Preprint CSCAMM-05-10; 2005. Online: [] [Google Scholar]
  3. Chen Q, Huang N, Riemenschneider S, Xu Y: A B-spline approach for empirical mode decompositions. Adv Comput Math2006, 24:171–195. [Google Scholar]
  4. Meignen S, Perrier V: A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process Lett2007, 14(12):932–935. [Google Scholar]
  5. Roy A, Doherty JF: Raised cosine interpolation for empirical mode decomposition. In Information Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on. Baltimore: IEEE; 2009. [Google Scholar]
  6. Roy A, Doherty JF: Improved signal analysis performance at low sampling rates using raised cosine empirical mode decomposition. Electron Lett2010, 46(2):176–177. [Google Scholar]
  7. Roy A, Doherty JF: Raised cosine filter-based empirical mode decomposition. IET Signal Process2011, 5(2):121–129. [Google Scholar]
  8. Stepien P: Application of empirical mode decomposition method in biomedical signal analysis (in polish). PhD thesis. Warsaw University of Technology; 2011. Supervisor: W. Klonowski. [Google Scholar]
  9. Rilling G, Flandrin P, Gonçalvès P: On empirical mode decomposition and its algorithms. In IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03. Grado, Italy; 2003. Online: [] [Google Scholar]
  10. Pierzchalski MP, Stepien RA, Stepien P: New nonlinear methods of heart rate variability analysis in diagnostics of atrial fibrillation. Int J Biol Biomed Eng2011, 5(4):201–208. [Google Scholar]
  11. Huang NE, Wu MLC, Long SR, Shen SSP, Qu W, Gloersen P, Fan KL: A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond Math Phys Sci2003, 459(2037):2317. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.