Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 2
Number of page(s) 20
DOI https://doi.org/10.1140/epjnbp/s40366-015-0018-0
Published online 19 March 2015
  1. Haralick R. Statistical and structural approaches to texture. IEEE Proc. 1979;67:786–804.
  2. Hajek M, Dezortova M, Materka A, Lerski R. Texture Analysis for Magnetic resonance Imaging. Prague: Med 4 publishing; 2006.
  3. Biondetti PR, Ehman RL. Soft-tissue sarcomas: use of textural patterns in skeletal muscle as a diagnostic feature in postoperative MR imaging. Radiology. 1992;183(3):845–8.
  4. Skoch A, Jirak D, Vyhnanovska P, Dezortova M, Fendrych P, Rolencova E, et al. Classification of calf muscle MR images by texture analysis. MAGMA. 2004;16:259–67.
  5. Wang J, Fan Z, Vandenborne K, Walter G, Shiloh-Malawsky Y,et al. Statistical texture analysis based MRI quantification of Duchenne muscular dystrophy in a canine model. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 86720 F (March 29, 2013);
  6. Nketiah G, Sievanen H, Eskola H. Correlation between hip muscles MRI texture parameters and femoral neck boneareal bone mineral density (aBMD) in different athletes groups. Phys Med. 2014;30(Supplement 1):e38–9.
  7. Herlidou S, Rolland Y, Bansard JY, Le Rumeur E, de Certaines JD. Comparison of automated and visual texture analysis in MRI: characterization of normal and diseased skeletal muscle. Magn Reson Imaging. 1999;17(9):1393–7.
  8. Mahmoud-Ghoneim D, Cherel Y, Lesoeur J, Lemaire L, Rocher C, de Certaines JD, et al. Texture analysis of magnetic resonance images of rat muscles during atrophy and regeneration. Magn Reson Imaging. 2006;24(2):167–71.
  9. Mamhoud-Ghoneim D, Bonny JM, Renou J-P, de Certaines JD. Ex-vivo Magnetic Resonance Imaging Texture Analysis can identify genotypic origin in bovine meat. J Sci Food Agric. 2005;85:629–32.
  10. Nguyen F, Eliat PA, Pinot M, Franconi F, Lemaire L, de Certaines JD, et al. Correlations between Magnetic Resonance Imaging histopathology in mdx (X-linked Muscular Dystrophy) murine model of Duchenne Muscular Dystrophy. Edinburgh: 24th congress of the European Society of Veterinary Pathology; 2006.
  11. Lerski RA, de Wilde J, Boyce D, Ridgway J. Quality control in magnetic resonance imaging. IPEM Report no 80. 1998. ISBN: 0904181901.
  12. European Communities Research Project (COMAC BME II 2.3). Protocols and test objects for the assessment of MRI equipment. Magn Reson Imaging. 1988;6:195–9.
  13. Lerski RA, McRobbie DW, Straughan K, Walker PM, de Certaines JD, Bernard AM. Multi-center trial with protocols and prototype test objects for the assessment of MRI equipment. Magn Reson Imaging. 1988;6:201–14.
  14. Lerski RA, de Certaines JD. Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging. 1993;11:817–33.
  15. Jackson EF, Bronskill MJ, Drost DJ, Och J, Pooley RA, Sobel WT, et al. AAPM Report 100: Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities. College Park, MD: American Association of Physicists in Medicine; 2010. ISBN 978-1-936366-02-6.
  16. Bydder GM, Pennock JM, Steiner RE, Khenia S, Payne JA, Young IR. The short TI inversion recovery sequence—An approach to MR imaging of the abdomen. Magn Reson Med. 1985;3:251–4.
  17. Keller PJ, Hunter WW, Schmalbrock P. Multisection fat–water imaging with chemical shift selective presaturation. Radiology. 1987;164:539–41.
  18. Kobayashi M, Nakamura A, Hasegawa D, Fujita M, Orima H, Takeda S. Evaluation of dystrophic dog pathology by fat-suppressed T2-weighted imaging. Muscle Nerve. 2009;40:815–26.
  19. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med. 1991;18:371–83.
  20. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, et al. Iterative decomposition of water and fat with echo asymmetry and least- squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54:636–44.
  21. Janiczek RL, Gambarota G, Sinclair CDJ, Yousry TA, Thornton JS, Golay X, et al. Simultaneous T2 and Lipid Quantitation Using IDEAL-CPMG. Magn Reson Med. 2011;66:1293–302.
  22. Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscul Disord. 2014;24:390–2.
  23. Thibaud JL, Monnet A, Bertoldi D, Barthelemy I, Blot S, Carlier PG. Characterization of dystrophic muscle in golden retriever muscular dystrophy dogs by nuclear magnetic resonance imaging. Neuromuscul Disord. 2007;17:575–84.
  24. Lewa CJ, de Certaines JD. Viscoelastic property detection by elastic displacement NMR measurements. J Magn Reson Imaging. 1995;5:242–4.
  25. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854.
  26. Qin EC, Juge L, Lambert S, Sinkus R, Bilston L. MR-Elastography and diffusion tensor imaging to measure the in-vivo anisotropic elasticity of skeletal muscles of Mdx and healthy mice. Proc Int Soc Mag Reson Med. 2012;20:3269.
  27. McMillan A.B., Shi D., Pratt S.J.P., Lovering R.M., Diffusion Tensor MRI to Assess Damage in Healthy and Dystrophic Skeletal Muscle after Lengthening Contractions, Journal of Biomedicine and Biotechnology, vol 2011, Article ID 970726, 10 pages,
  28. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.
  29. Mahmoud-Ghoneim D, Alkaabi MK, de Certaines JD, Goettsche FM. The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging. 2008;8:18.
  30. Wang J, Fan Z, Vandenborne K, Walter G, Shiloh-Malawsky Y, An H, et al. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy. Int J Comput Assist Radiol Surg. 2013;8(5):763–74.
  31. Fan Z, Wang J, Ahn M, Shiloh-Malawsky Y, Chahin N, Elmore S, et al. Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord. 2014;24(2):178–91.
  32. Gonzalez RC, Woods RE. Image Compression. In: Digital Image Processing. 2nd ed. Reading, MA: Addison-Wesley; 2002.
  33. Lerski R, Straughan K, Shad L, Boyce D, Bluml S, Zuna I. MR Image Texture Analysis - An Approach to Tissue Characterization. Magn Reson Imaging. 1993;11:873–87.
  34. Weszka JS, Dyer CR, Rosenfeld A. A Comparative Study of Texture Measures for Terrain Classification. IEEE Trans Syst Man Cybern. 1976;6:269–85.
  35. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.
  36. Bankman I. N. (Ed.). Handbook of Medical Imaging, Processing and Analysis, Academic Press, 2000.
  37. Galloway MM. Texture analysis using grey level run lengths. Comput Graphics Image Process. 1975;4:172–9.
  38. Chu A, Sehgal CM, Greenleaf JF. Use of grey value distribution of run lengths for texture analysis. Pattern Recogn Lett. 1990;11:415–20.
  39. Albregtsen F, Nielsen B, Danielsen HE. Adaptive grey level run length features from class distance matrices. Proc 15th Int Conf Pattern Recognition. 2000;3:738–41.
  40. Laws KI. Textured image segmentation. Los Angeles, California, USA: Unpublished doctoral dissertation. University of Southern California; 1980.
  41. Edgar G. A. Measure, Topology and Fractal Geometry, Springer-Verlag, 1990.
  42. Falconer K. Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, 1990.
  43. Peitgen H. O., Jürgens H., Saupe D. Fractals for the Classroom. Part 1: Introduction to Fractals and Chaos, Springer-Verlag, 1992.
  44. Mandelbrot B. The Fractal Geometry of Nature, W. H. Freeman and Co., 1982
  45. Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI. An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng. 1998;45(6):783–94.
  46. Klonowski W, Pierzchalski M, Stepien P, Stepien R, Sedivy R, Ahammer H. Application of Higuchi’s fractal dimension in analysis of images of Anal Intraepithelial Neoplasia. Chaos, Solitons Fractals (Elsevier). 2013;48:54–60.
  47. Shu H, Luo L, Coatrieux JL. Moment-Based Approaches in Image, Part 1. Basic Features. IEEE Eng Med Biol Mag. 2007;26(5):70–4.
  48. Shu HZ, Luo LM, Coatrieux JL. Moment-based approaches in image, Part2: invariance. IEEE Eng Med Biol Mag. 2008;27(1):81–3.
  49. Shu HZ, Luo LM, Coatrieux JL. Moment-based approaches in image, Part 3: computational considerations. IEEE Eng Med Biol Mag. 2008;27(3):89–91.
  50. Vincent Spruyt, About the Curse of Dimensionality, June 6, 2014, http://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.