Open Access
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 9
Number of page(s) 17
Published online 28 October 2015
  1. Dornhege G, Millan J, Hinterberger T, McFarland DJ, Müller KR. Toward brain-computer interfacing. Cambridge: MIT Press; 2007.
  2. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, et al.Brain-computer interface technology: a review of the first international meeting. IEEE Trans Neural Syst Rehabil Eng. 2000; 8(2):164–73.
  3. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al.A spelling device for the paralysed. Nature. 1999; 398:297–8.
  4. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?Clin Neurophysiol. 2008; 119:2658–66.
  5. Kübler A. Brain-computer interfacing: science fiction has come true. Brain. 2013; 136:2001–4.
  6. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients.Clin Neurophysiol. 2006; 117:538–48.
  7. Wolpaw JR, Birbaumer N, Pfurtscheller G, Mcfarland DJ, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002; 6:767–91.
  8. Del R Millan JJ, Galan F, Vanhooydonck D, Lew E, Philips J, Nuttin M. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: Conf. Proc. of the 31st IEEE Eng. Med. Biol. Soc. USA. Minnesota: Hilton Minneapolis: 2009. p. 3361–4.
  9. Mohebbi A, Engelsholm SK, Puthusserypady S, Kjaer TW, Thomsen CE, Sorensen HBD. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated visual evoked potential. In: Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy: 2015.
  10. Ali A, Puthusserypady S. A 3D learning playground for potential attention training in ADHD: A brain computer interface approach. In: Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy: 2015.
  11. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008; 7:1032–43.
  12. Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, et al.The Berlin brain-computer interface: non-medical uses of BCI technology. Front Neuroscience. 2010; 4(Article 198):1–17.
  13. Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. Jl Neurosci Methods. 2007; 167(1):82–90.
  14. Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(1):89–98.
  15. Lugo ZR, Rodriguez J, Lechner A, Ortner R, Gantner IS, Laureys S, et al.A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Clin EEG Neurosci. 2014; 45(1):14–21.
  16. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al.P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol. 2006; 117(3):531–7.
  17. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol. 1988; 70(6):510–23.
  18. Bayliss JD. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng. 2003; 11(2):113–6.
  19. Vilic A, Kjaer TW, Thomsen CE, Puthusserypady S, Sorensen HBD. DTU BCI speller: an SSVEP-based spelling system with dictionary support. In: Proc. of the 35th IEEE Eng. Med. Biol. Soc. Osaka, Japan: 2013. p. 2212–5.
  20. Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCI to control a hand orthosis for persons with Tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(1):1–5.
  21. Leow R, Ibrahim F, Moghavvemi M. Development of a steady state visual evoked potential (SSVEP)-based brain computer interface (BCI) system. In: Intl. Conf. on Intell. and Adv. Syst. Kuala Lumpur: 2007. p. 321–4.
  22. Liavas AP, Moustakides GV, Henning G, Psarakis EZ, Husar P. A periodogram-based method for the detection of steady-state visually evoked potentials. IEEE Trans Biomed Eng. 1998; 45(2):242–8.
  23. Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng. 2002; 49(10):1181–6.
  24. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Nat Acad Sci. 2004; 17:849–54.
  25. McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based braincomputer interface (BCI): feature selection by regression improves performance. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(3):372–9.
  26. Yue J, Zhou Z, Jiang J, Liu Y, Hu D. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm. Neurosci Lett. 2012; 524(2):95–100.
  27. Friedricha E, Schererb R, Neuper C. Long-term evaluation of a 4-class imagery-based brain-computer interface. Clin. Neurophysiol. 2013; 124(5):916–27.
  28. Hazrati M, Erfanian A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys. 2010; 32(7):730–9.
  29. Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R. Auto-calibration and recurrent adaptation: towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng. 2012; 20(3):313–9.
  30. Iversen IH, Ghanayim N, Kübler A, Neumann N, Birbaumer N, Kaiser J. A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008; 119(10):2214–23.
  31. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996; 77(1-2):45–52.
  32. Pfurtscheller G, Lopes DSF. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11):1842–1457.
  33. Royer A, He B. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms. Jl Neural Eng. 2009;6(1). doi:10.1088/1741--2560/6/1/016005.
  34. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G Müller KR. The Berlin brain-computer interface: accurate performance from first-session in BCI-Naïve Subjects. IEEE Trans on Biomed Eng. 2008; 55(10):2452–62.
  35. Vuckovic A, Sepulveda F. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications. Clin Neurophysiol. 2008; 119(2):446–58.
  36. Kübler A, Müller KR. An introduction to brain-computer interfacing. Cambridge: MIT Press, p. 2007.
  37. El-Madani A. Introduction to brain computer interface. Study report. Denmark: Dep. Elec. Eng., DTU, Lyngby;2009.
  38. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; 9(1):97–113.
  39. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol. 1999; 110(5):787–98.
  40. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig Process Mag. 2008; 25(1):41–56.
  41. Fukunaga K. Random vectors and their properties. In: Introduction to statistical pattern recognition. New York: Morgan Kaufmann Publishers: 1990. p. 10–35.
  42. Pedro D, Michael P. On the optimality of the simple Bayesian classifier uner zero-one loss. Mach Learn. 1997; 29:103–30.
  43. Jonsson M.Brain computer interface. MSc. Thesis. Denmark: Dep. Elec. Eng., DTU; 2008.
  44. Blumberg J, Rickert J, Waldert S, Schulze-Bonhage A, Aertsen A, Mehring C. 2007. Adaptive classification for brain computer interfaces, Vol. 1. France: Med. Biol. Soc. Conf. Lyon.
  45. Dickhaus T, Sannelli C, Müller KR, Curio G, Blankertz B. Predicting BCI performance to study BCI illiteracy. Bio. Med. Centr. Neuroscience. 2009; 10(Suppl 1):84. doi:10.1186/1471-2202-10-S1-P84.
  46. Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr. 2010; 23(2):194–8.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.