Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 9
Number of page(s) 17
DOI https://doi.org/10.1140/epjnbp/s40366-015-0024-2
Published online 28 October 2015
  1. Dornhege G, Millan J, Hinterberger T, McFarland DJ, Müller KR. Toward brain-computer interfacing. Cambridge: MIT Press; 2007. [Google Scholar]
  2. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, et al.Brain-computer interface technology: a review of the first international meeting. IEEE Trans Neural Syst Rehabil Eng. 2000; 8(2):164–73. [Google Scholar]
  3. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al.A spelling device for the paralysed. Nature. 1999; 398:297–8. [Google Scholar]
  4. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?Clin Neurophysiol. 2008; 119:2658–66. [Google Scholar]
  5. Kübler A. Brain-computer interfacing: science fiction has come true. Brain. 2013; 136:2001–4. [Google Scholar]
  6. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients.Clin Neurophysiol. 2006; 117:538–48. [Google Scholar]
  7. Wolpaw JR, Birbaumer N, Pfurtscheller G, Mcfarland DJ, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002; 6:767–91. [Google Scholar]
  8. Del R Millan JJ, Galan F, Vanhooydonck D, Lew E, Philips J, Nuttin M. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: Conf. Proc. of the 31st IEEE Eng. Med. Biol. Soc. USA. Minnesota: Hilton Minneapolis: 2009. p. 3361–4. [Google Scholar]
  9. Mohebbi A, Engelsholm SK, Puthusserypady S, Kjaer TW, Thomsen CE, Sorensen HBD. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated visual evoked potential. In: Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy: 2015. [Google Scholar]
  10. Ali A, Puthusserypady S. A 3D learning playground for potential attention training in ADHD: A brain computer interface approach. In: Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy: 2015. [Google Scholar]
  11. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008; 7:1032–43. [Google Scholar]
  12. Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, et al.The Berlin brain-computer interface: non-medical uses of BCI technology. Front Neuroscience. 2010; 4(Article 198):1–17. [Google Scholar]
  13. Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. Jl Neurosci Methods. 2007; 167(1):82–90. [Google Scholar]
  14. Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(1):89–98. [Google Scholar]
  15. Lugo ZR, Rodriguez J, Lechner A, Ortner R, Gantner IS, Laureys S, et al.A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Clin EEG Neurosci. 2014; 45(1):14–21. [Google Scholar]
  16. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al.P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol. 2006; 117(3):531–7. [Google Scholar]
  17. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol. 1988; 70(6):510–23. [Google Scholar]
  18. Bayliss JD. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng. 2003; 11(2):113–6. [Google Scholar]
  19. Vilic A, Kjaer TW, Thomsen CE, Puthusserypady S, Sorensen HBD. DTU BCI speller: an SSVEP-based spelling system with dictionary support. In: Proc. of the 35th IEEE Eng. Med. Biol. Soc. Osaka, Japan: 2013. p. 2212–5. [Google Scholar]
  20. Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCI to control a hand orthosis for persons with Tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(1):1–5. [Google Scholar]
  21. Leow R, Ibrahim F, Moghavvemi M. Development of a steady state visual evoked potential (SSVEP)-based brain computer interface (BCI) system. In: Intl. Conf. on Intell. and Adv. Syst. Kuala Lumpur: 2007. p. 321–4. [Google Scholar]
  22. Liavas AP, Moustakides GV, Henning G, Psarakis EZ, Husar P. A periodogram-based method for the detection of steady-state visually evoked potentials. IEEE Trans Biomed Eng. 1998; 45(2):242–8. [Google Scholar]
  23. Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng. 2002; 49(10):1181–6. [Google Scholar]
  24. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Nat Acad Sci. 2004; 17:849–54. [Google Scholar]
  25. McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based braincomputer interface (BCI): feature selection by regression improves performance. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(3):372–9. [Google Scholar]
  26. Yue J, Zhou Z, Jiang J, Liu Y, Hu D. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm. Neurosci Lett. 2012; 524(2):95–100. [Google Scholar]
  27. Friedricha E, Schererb R, Neuper C. Long-term evaluation of a 4-class imagery-based brain-computer interface. Clin. Neurophysiol. 2013; 124(5):916–27. [Google Scholar]
  28. Hazrati M, Erfanian A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys. 2010; 32(7):730–9. [Google Scholar]
  29. Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R. Auto-calibration and recurrent adaptation: towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng. 2012; 20(3):313–9. [Google Scholar]
  30. Iversen IH, Ghanayim N, Kübler A, Neumann N, Birbaumer N, Kaiser J. A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008; 119(10):2214–23. [Google Scholar]
  31. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996; 77(1-2):45–52. [Google Scholar]
  32. Pfurtscheller G, Lopes DSF. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11):1842–1457. [Google Scholar]
  33. Royer A, He B. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms. Jl Neural Eng. 2009;6(1). doi:10.1088/1741--2560/6/1/016005. [Google Scholar]
  34. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G Müller KR. The Berlin brain-computer interface: accurate performance from first-session in BCI-Naïve Subjects. IEEE Trans on Biomed Eng. 2008; 55(10):2452–62. [Google Scholar]
  35. Vuckovic A, Sepulveda F. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications. Clin Neurophysiol. 2008; 119(2):446–58. [Google Scholar]
  36. Kübler A, Müller KR. An introduction to brain-computer interfacing. Cambridge: MIT Press, p. 2007. [Google Scholar]
  37. El-Madani A. Introduction to brain computer interface. Study report. Denmark: Dep. Elec. Eng., DTU, Lyngby;2009. [Google Scholar]
  38. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; 9(1):97–113. [Google Scholar]
  39. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol. 1999; 110(5):787–98. [Google Scholar]
  40. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig Process Mag. 2008; 25(1):41–56. [Google Scholar]
  41. Fukunaga K. Random vectors and their properties. In: Introduction to statistical pattern recognition. New York: Morgan Kaufmann Publishers: 1990. p. 10–35. [Google Scholar]
  42. Pedro D, Michael P. On the optimality of the simple Bayesian classifier uner zero-one loss. Mach Learn. 1997; 29:103–30. [Google Scholar]
  43. Jonsson M.Brain computer interface. MSc. Thesis. Denmark: Dep. Elec. Eng., DTU; 2008. [Google Scholar]
  44. Blumberg J, Rickert J, Waldert S, Schulze-Bonhage A, Aertsen A, Mehring C. 2007. Adaptive classification for brain computer interfaces, Vol. 1. France: Med. Biol. Soc. Conf. Lyon. [Google Scholar]
  45. Dickhaus T, Sannelli C, Müller KR, Curio G, Blankertz B. Predicting BCI performance to study BCI illiteracy. Bio. Med. Centr. Neuroscience. 2009; 10(Suppl 1):84. doi:10.1186/1471-2202-10-S1-P84. [Google Scholar]
  46. Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr. 2010; 23(2):194–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.