Open Access
Issue
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 8
Number of page(s) 15
DOI https://doi.org/10.1140/epjnbp/s40366-015-0022-4
Published online 12 August 2015
  1. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.
  2. Fitts PM, Peterson JR. Information capacity of discrete motor responses. J Exp Psychol. 1964;67(2):103–12.
  3. Shannon C, Weaver W. The mathematical theory of communication. Urbaba, IL: University of Illinois Press; 1949.
  4. MacKenzie IS. Fitts’ law as a research and design tool in human-computer interaction. Human-Computer Interaction. 1992;7:91–139.
  5. Meyer DE, Kornblum S, Abrams RA, Wright CE, Smith JEK. Optimality in human motor-performance - ideal control of rapid aimed movements. Psychol Rev. 1988;95(3):340–70. doi:10.1037/0033-295x.95.3.340.
  6. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT. Motor-output variability - theory for the accuracy of rapid motor acts. Psychol Rev. 1979;86(5):415–51. doi:10.1037//0033-295x.86.5.415.
  7. Guiard Y. The problem of consistency in the design of Fitts’ law experiments: consider either target distance and width or movement form and scale. ACM Conference on Human Factors in Computing Systems. New York: Sheridan Press; 2009. p. 1908–18.
  8. Welford AT, Norris AH, Shock NW. Speed and accuracy of movement and their changes with age. Acta Psychol. 1969;30:3–15.
  9. Buchanan JJ, Park JH, Shea CH. Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Exp Brain Res. 2006;175(4):710–25. doi:10.1007/S00221-006-0589-1.
  10. Guiard Y. Fitts’ law in the discrete vs cyclical paradigm. Hum Movement Sci. 1997;16(1):97–131. doi:10.1016/S0167-9457(96)00045-0.
  11. Mottet D, Bootsma RJ. The dynamics of goal-directed rhythmical aiming. Biol Cybern. 1999;80(4):235–45. doi:10.1007/S004220050521.
  12. Sleimen-Malkoun R, Temprado JJ, Huys R, Jirsa V, Berton E. Is Fitts’ Law continuous in discrete aiming? Plos One. 2012;7(7):e41190. doi:10.1371/journal.pone.0041190.
  13. Smits-Engelsman BC, Swinnen SP, Duysens J. The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Neurosci Lett. 2006;396(1):28–32. doi:10.1016/j.neulet.2005.11.001.
  14. Crossman ERFW, Goodeve PJ. Feedback control of hand-movement and Fitts’ law. Q J Exp Psychol. 1963;35A:407–25.
  15. Bongers RM, Fernandez L, Bootsma RJ. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics. J Exp Psychol Human. 2009;35(5):1443–57. doi:10.1037/A0015783.
  16. Guiard Y. On Fitts and Hooke laws - simple harmonic movement in upper-limb cyclical aiming. Acta Psychol. 1993;82(1–3):139–59. doi:10.1016/0001-6918(93)90009-G.
  17. Huys R, Fernandez L, Bootsma RJ, Jirsa VK. Fitts’ law is not continuous in reciprocal aiming. P Roy Soc B-Biol Sci. 2010;277(1685):1179–84. doi:10.1098/Rspb.2009.1954.
  18. van Mourik AM, Daffertshofer A, Beek PJ. Extracting global and local dynamics from the stochastics of rhythmic forearm movements. J Mot Behav. 2008;40(3):214–31. doi:10.3200/JMBR.40.3.214-231.
  19. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, engineering. Cambridge Massachusetts: Perseus Books Publishing, LLC; 1994.
  20. Haken H, Kelso JAS, Bunz H. A theoretical-model of phase-transitions in human hand movements. Biol Cybern. 1985;51(5):347–56. doi:10.1007/Bf00336922.
  21. Kay BA, Saltzman EL, Kelso JAS, Schöner G. Space-time behavior of single and bimanual rhythmical movements - data and limit-cycle model. J Exp Psychol Human. 1987;13(2):178–92. doi:10.1037//0096-1523.13.2.178.
  22. Daffertshofer A, van Veen B, Ton R, Huys R. Discrete and rhythmic movements - just a bifurcation apart? IEEE International Conference on Systems, Man and Cybernetics; San Diego. CA: IEEE; 2014. p. 778–83.
  23. Kay BA. The dimensionality of movement trajectories and the degrees of freedom problem - a tutorial. Hum Movement Sci. 1988;7(2–4):343–64. doi:10.1016/0167-9457(88)90016-4.
  24. Jirsa VK, Kelso JAS. The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J Mot Behav. 2005;37(1):35–51. doi:10.3200/Jmbr.37.1.35-51.
  25. Schöner G. A dynamic theory of coordination of discrete movement. Biol Cybern. 1990;63(4):257–70. doi:10.1007/Bf00203449.
  26. Buchanan JJ, Park JH, Shea CH. Systematic scaling of target width: dynamics, planning, and feedback. Neurosci Lett. 2004;367(3):317–22. doi:10.1016/J.Neulet.2004.06.028.
  27. Thompson SG, McConnell DS, Slocum JS, Bohan M. Kinematic analysis of multiple constraints on a pointing task. Hum Movement Sci. 2007;26(1):11–26. doi:10.1016/J.Humov.2006.09.001.
  28. Sleimen-Malkoun R, Temprado JJ, Berton E. Age-related changes of movement patterns in discrete Fitts’ task. BMC Neurosci. 2013;14:145. doi:10.1186/1471-2202-14-145.
  29. Perdikis D, Huys R, Jirsa VK. Complex processes from dynamical architectures with time-scale hierarchy. PLoS One. 2011;6(2):e16589. doi:10.1371/journal.pone.0016589.
  30. Feldman AG. Once more on the equilibrium-point hypothesis (lambda-model) for motor control. J Mot Behav. 1986;18(1):17–54.
  31. Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Advances in psychology: Vol.1. Tutorials in motor behavior. Amsterdam, the Netherlands: Elsevier B.V; 1980. p. 3–47.
  32. Saltzman EL, Munhall KG. Skill acquisition and development: the roles of state-, parameter, and graph dynamics. J Mot Behav. 1992;24(1):49–57. doi:10.1080/00222895.1992.9941600.
  33. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4. doi:10.1038/29528.
  34. Robertson SD, Zelaznik HN, Lantero DA, Bojczyk KG, Spencer RM, Doffin JG, et al. Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Human. 1999;25(5):1316–30. doi:10.1037/0096-1523.25.5.1316.
  35. Guiard Y, Olafsdottir H, Perrault S, editors. Fitts’ law as an explicit time/error trade-off. ACM Conference on Human Factors in Computing Systems, 2011.
  36. Kostrubiec V, Zanone PG, Fuchs A, Kelso JAS. Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner-experimental evidence and theoretical model. Front Hum Neurosci. 2012;6:Artn 222. doi:10.3389/Fnhum.2012.00222.
  37. Plamondon R, Alimi AM. Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci. 1997;20(2):279–303.
  38. Welford AT. Fundamentals of skill. London, UK: Methuen; 1968.
  39. Peinke J, Friedrich R, Chilla F, Chabaud B, Naert A. Statistical dependency of eddies of different sizes in turbulence. Z Phys B Con Mat. 1996;101(2):157–9. doi:10.1007/S002570050194.
  40. van Mourik AM, Daffertshofer A, Beek PJ. Estimating Kramers-Moyal coefficients in short and non-stationary data sets. Phys Lett A. 2006;351(1–2):13–7. doi:10.1016/J.Physleta.2005.10.066.
  41. Huys R, Studenka BE, Rheaume NL, Zelaznik HN, Jirsa VK. Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput Biol. 2008;4(4):Artn E1000061. doi:10.1371/Journal.Pcbi.1000061.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.