Open Access
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 8
Number of page(s) 15
Published online 12 August 2015
  1. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91. [Google Scholar]
  2. Fitts PM, Peterson JR. Information capacity of discrete motor responses. J Exp Psychol. 1964;67(2):103–12. [Google Scholar]
  3. Shannon C, Weaver W. The mathematical theory of communication. Urbaba, IL: University of Illinois Press; 1949. [Google Scholar]
  4. MacKenzie IS. Fitts’ law as a research and design tool in human-computer interaction. Human-Computer Interaction. 1992;7:91–139. [Google Scholar]
  5. Meyer DE, Kornblum S, Abrams RA, Wright CE, Smith JEK. Optimality in human motor-performance - ideal control of rapid aimed movements. Psychol Rev. 1988;95(3):340–70. doi:10.1037/0033-295x.95.3.340. [Google Scholar]
  6. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT. Motor-output variability - theory for the accuracy of rapid motor acts. Psychol Rev. 1979;86(5):415–51. doi:10.1037//0033-295x.86.5.415. [Google Scholar]
  7. Guiard Y. The problem of consistency in the design of Fitts’ law experiments: consider either target distance and width or movement form and scale. ACM Conference on Human Factors in Computing Systems. New York: Sheridan Press; 2009. p. 1908–18. [Google Scholar]
  8. Welford AT, Norris AH, Shock NW. Speed and accuracy of movement and their changes with age. Acta Psychol. 1969;30:3–15. [Google Scholar]
  9. Buchanan JJ, Park JH, Shea CH. Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Exp Brain Res. 2006;175(4):710–25. doi:10.1007/S00221-006-0589-1. [Google Scholar]
  10. Guiard Y. Fitts’ law in the discrete vs cyclical paradigm. Hum Movement Sci. 1997;16(1):97–131. doi:10.1016/S0167-9457(96)00045-0. [Google Scholar]
  11. Mottet D, Bootsma RJ. The dynamics of goal-directed rhythmical aiming. Biol Cybern. 1999;80(4):235–45. doi:10.1007/S004220050521. [Google Scholar]
  12. Sleimen-Malkoun R, Temprado JJ, Huys R, Jirsa V, Berton E. Is Fitts’ Law continuous in discrete aiming? Plos One. 2012;7(7):e41190. doi:10.1371/journal.pone.0041190. [Google Scholar]
  13. Smits-Engelsman BC, Swinnen SP, Duysens J. The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Neurosci Lett. 2006;396(1):28–32. doi:10.1016/j.neulet.2005.11.001. [Google Scholar]
  14. Crossman ERFW, Goodeve PJ. Feedback control of hand-movement and Fitts’ law. Q J Exp Psychol. 1963;35A:407–25. [Google Scholar]
  15. Bongers RM, Fernandez L, Bootsma RJ. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics. J Exp Psychol Human. 2009;35(5):1443–57. doi:10.1037/A0015783. [Google Scholar]
  16. Guiard Y. On Fitts and Hooke laws - simple harmonic movement in upper-limb cyclical aiming. Acta Psychol. 1993;82(1–3):139–59. doi:10.1016/0001-6918(93)90009-G. [Google Scholar]
  17. Huys R, Fernandez L, Bootsma RJ, Jirsa VK. Fitts’ law is not continuous in reciprocal aiming. P Roy Soc B-Biol Sci. 2010;277(1685):1179–84. doi:10.1098/Rspb.2009.1954. [Google Scholar]
  18. van Mourik AM, Daffertshofer A, Beek PJ. Extracting global and local dynamics from the stochastics of rhythmic forearm movements. J Mot Behav. 2008;40(3):214–31. doi:10.3200/JMBR.40.3.214-231. [Google Scholar]
  19. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, engineering. Cambridge Massachusetts: Perseus Books Publishing, LLC; 1994. [Google Scholar]
  20. Haken H, Kelso JAS, Bunz H. A theoretical-model of phase-transitions in human hand movements. Biol Cybern. 1985;51(5):347–56. doi:10.1007/Bf00336922. [Google Scholar]
  21. Kay BA, Saltzman EL, Kelso JAS, Schöner G. Space-time behavior of single and bimanual rhythmical movements - data and limit-cycle model. J Exp Psychol Human. 1987;13(2):178–92. doi:10.1037//0096-1523.13.2.178. [Google Scholar]
  22. Daffertshofer A, van Veen B, Ton R, Huys R. Discrete and rhythmic movements - just a bifurcation apart? IEEE International Conference on Systems, Man and Cybernetics; San Diego. CA: IEEE; 2014. p. 778–83. [Google Scholar]
  23. Kay BA. The dimensionality of movement trajectories and the degrees of freedom problem - a tutorial. Hum Movement Sci. 1988;7(2–4):343–64. doi:10.1016/0167-9457(88)90016-4. [Google Scholar]
  24. Jirsa VK, Kelso JAS. The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J Mot Behav. 2005;37(1):35–51. doi:10.3200/Jmbr.37.1.35-51. [Google Scholar]
  25. Schöner G. A dynamic theory of coordination of discrete movement. Biol Cybern. 1990;63(4):257–70. doi:10.1007/Bf00203449. [Google Scholar]
  26. Buchanan JJ, Park JH, Shea CH. Systematic scaling of target width: dynamics, planning, and feedback. Neurosci Lett. 2004;367(3):317–22. doi:10.1016/J.Neulet.2004.06.028. [Google Scholar]
  27. Thompson SG, McConnell DS, Slocum JS, Bohan M. Kinematic analysis of multiple constraints on a pointing task. Hum Movement Sci. 2007;26(1):11–26. doi:10.1016/J.Humov.2006.09.001. [Google Scholar]
  28. Sleimen-Malkoun R, Temprado JJ, Berton E. Age-related changes of movement patterns in discrete Fitts’ task. BMC Neurosci. 2013;14:145. doi:10.1186/1471-2202-14-145. [Google Scholar]
  29. Perdikis D, Huys R, Jirsa VK. Complex processes from dynamical architectures with time-scale hierarchy. PLoS One. 2011;6(2):e16589. doi:10.1371/journal.pone.0016589. [Google Scholar]
  30. Feldman AG. Once more on the equilibrium-point hypothesis (lambda-model) for motor control. J Mot Behav. 1986;18(1):17–54. [Google Scholar]
  31. Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Advances in psychology: Vol.1. Tutorials in motor behavior. Amsterdam, the Netherlands: Elsevier B.V; 1980. p. 3–47. [Google Scholar]
  32. Saltzman EL, Munhall KG. Skill acquisition and development: the roles of state-, parameter, and graph dynamics. J Mot Behav. 1992;24(1):49–57. doi:10.1080/00222895.1992.9941600. [Google Scholar]
  33. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4. doi:10.1038/29528. [Google Scholar]
  34. Robertson SD, Zelaznik HN, Lantero DA, Bojczyk KG, Spencer RM, Doffin JG, et al. Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Human. 1999;25(5):1316–30. doi:10.1037/0096-1523.25.5.1316. [Google Scholar]
  35. Guiard Y, Olafsdottir H, Perrault S, editors. Fitts’ law as an explicit time/error trade-off. ACM Conference on Human Factors in Computing Systems, 2011. [Google Scholar]
  36. Kostrubiec V, Zanone PG, Fuchs A, Kelso JAS. Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner-experimental evidence and theoretical model. Front Hum Neurosci. 2012;6:Artn 222. doi:10.3389/Fnhum.2012.00222. [Google Scholar]
  37. Plamondon R, Alimi AM. Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci. 1997;20(2):279–303. [Google Scholar]
  38. Welford AT. Fundamentals of skill. London, UK: Methuen; 1968. [Google Scholar]
  39. Peinke J, Friedrich R, Chilla F, Chabaud B, Naert A. Statistical dependency of eddies of different sizes in turbulence. Z Phys B Con Mat. 1996;101(2):157–9. doi:10.1007/S002570050194. [Google Scholar]
  40. van Mourik AM, Daffertshofer A, Beek PJ. Estimating Kramers-Moyal coefficients in short and non-stationary data sets. Phys Lett A. 2006;351(1–2):13–7. doi:10.1016/J.Physleta.2005.10.066. [Google Scholar]
  41. Huys R, Studenka BE, Rheaume NL, Zelaznik HN, Jirsa VK. Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput Biol. 2008;4(4):Artn E1000061. doi:10.1371/Journal.Pcbi.1000061. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.