Open Access
Issue
EPJ Nonlinear Biomed. Phys.
Volume 5, 2017
Article Number 2
Number of page(s) 16
Section Physics of Biological Systems and Their Interactions
DOI https://doi.org/10.1051/epjnbp/2017001
Published online 30 June 2017
  1. V. Braitenberg, A. Schütz, Anatomy of the cortex – statistics and geometry (Springer, Berlin, 1991) [CrossRef] [Google Scholar]
  2. J.M.J. Murre, D.P.F. Sturdy, The connectivity of the brain: multi-level quantitative analysis, Biol. Cybern. 73, 529 (1995) [CrossRef] [Google Scholar]
  3. A. Volterra, J. Meldolesi, Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci. 6, 626 (2005) [CrossRef] [PubMed] [Google Scholar]
  4. V.B. Mountcastle, The columnar organization of the neocortex, Brain 120, 701 (1997) [CrossRef] [Google Scholar]
  5. B. Hutcheon, Y. Yarom, Resonance, oscillation and the intrinsic frequency preferences of neurons, Trends Neurosci. 23, 216 (2000) [CrossRef] [PubMed] [Google Scholar]
  6. A.K. Engel, P. Fries, W. Singer, Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2, 704 (2001) [CrossRef] [PubMed] [Google Scholar]
  7. E. Salinas, T.J. Sejnowski, Correlated neuronal activity and the flow of neural information, Nat. Rev. Neurosci. 2, 539 (2001) [CrossRef] [PubMed] [Google Scholar]
  8. F.J. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brain web: Phase synchronization and large-scale integration, Nat. Rev. Neurosci. 2, 229 (2001) [CrossRef] [PubMed] [Google Scholar]
  9. S. Makeig, S. Debener, J. Onton, A. Delorme, Mining event-related brain dynamics, Trends Cogn. Sci. 8, 204 (2004) [CrossRef] [Google Scholar]
  10. S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci. 14, 277 (2010) [CrossRef] [Google Scholar]
  11. J. Fell, N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12, 105 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci. 13, 407 (2012) [CrossRef] [PubMed] [Google Scholar]
  13. W. Freeman, Neurodynamics: an exploration in mesoscopic brain dynamics (Springer, London, UK, 2012) [Google Scholar]
  14. M.I. Rabinovich, K.J. Friston, P. Varona, eds., Principles of brain dynamics: global state interactions (MIT Press, Cambridge, MA, 2012) [Google Scholar]
  15. M. Siegel, T.H. Donner, A.K. Engel, Spectral fingerprints of large-scale neuronal interactions, Nat. Rev. Neurosci. 13, 121 (2012) [Google Scholar]
  16. A.K. Engel, C. Gerloff, C.C. Hilgetag, G. Nolte, Intrinsic coupling modes: multiscale interactions in ongoing brain activity, Neuron 80, 867 (2013) [CrossRef] [Google Scholar]
  17. H.S. Lee, A. Ghetti, A. Pinto-Duarte, X. Wang, G. Dziewczapolski, F. Galimi, S. Huitron-Resendiz, J.C. Pina-Crespo, A.J. Roberts, I.M. Verma, T.J. Sejnowski, S.F. Heinemann, Astrocytes contribute to gamma oscillations and recognition memory, Proc. Natl. Acad. Sci. USA 111, 3343 (2014) [CrossRef] [Google Scholar]
  18. A. Schnitzler, J. Gross, Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci. 6, 285 (2005) [CrossRef] [PubMed] [Google Scholar]
  19. P.J. Uhlhaas, W. Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron 52, 155 (2006) [CrossRef] [PubMed] [Google Scholar]
  20. N.D. Schiff, T. Nauvel, J.D. Victor, Large-scale brain dynamics in disorders of consciousness, Curr. Opin. Neurobiol. 25, 7 (2014) [CrossRef] [Google Scholar]
  21. E. Niedermeyer, F. Lopes da Silva, Electroencephalography: basic principles, clinical applications, and related fields (Lippincott Williams and Williams, Philadelphia, 2005) [Google Scholar]
  22. M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys. 65, 413 (1993) [CrossRef] [Google Scholar]
  23. S.A. Huettel, A.W. Song, G. McCarthy, Functional magnetic resonance imaging, 3rd edn (Sinauer Associates Sunderland, Sunderland, MA, USA, 2004) [Google Scholar]
  24. F. Rosenow, H. Lüders, Presurgical evaluation of epilepsy, Brain 124, 1683 (2001) [CrossRef] [PubMed] [Google Scholar]
  25. A.K. Engel, C.K.E. Moll, I. Fried, G.A. Ojemann, Invasive recordings from the human brain: clinical insights and beyond, Nat. Rev. Neurosci. 6, 35 (2005) [CrossRef] [PubMed] [Google Scholar]
  26. S.S. Cash, L.R. Hochberg, The emergence of single neurons in clinical neurology, Neuron 86, 79 (2015) [CrossRef] [Google Scholar]
  27. E.F. Chang, Towards large-scale, human-based, mesoscopic neurotechnologies, Neuron 86, 68 (2015) [CrossRef] [Google Scholar]
  28. J. Niediek, J. Boström, C.E. Elger, F. Mormann, Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours, PLOS ONE 11, 0166598 (2016) [CrossRef] [Google Scholar]
  29. S. Panzeri, J.H. Macke, J. Gross, C. Kayser, Neural population coding: combining insights from microscopic and mass signals, Trends Cogn. Sci. 19, 162 (2015) [CrossRef] [Google Scholar]
  30. S. Marom, Neural timescales or lack thereof, Prog. Neurobiol. 90, 16 (2010) [CrossRef] [PubMed] [Google Scholar]
  31. T. Gisiger, Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol. Rev. 76, 161 (2001) [CrossRef] [Google Scholar]
  32. C. Bédard, H. Kröger, A. Destexhe, Does the 1∕f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97, 118102 (2006) [CrossRef] [PubMed] [Google Scholar]
  33. G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol. 1, 15 (2010) [Google Scholar]
  34. B.J. He, Scale-free brain activity: past, present, and future, Trends Cogn. Sci. 18, 480 (2014) [CrossRef] [Google Scholar]
  35. C. Meisel, C. Kuehn, Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures, PLOS ONE 7, 30371 (2012) [CrossRef] [Google Scholar]
  36. P.L. Nunez, R. Srinivasan, Electric fields of the brain: the neurophysics of EEG (Oxford University Press, Oxford, UK, 2006), 2nd edn [CrossRef] [Google Scholar]
  37. K. Lehnertz, J. Arnhold, P. Grassberger, C.E. Elger, Chaos in brain? (World Scientific, Singapore, 2000) [CrossRef] [Google Scholar]
  38. M. Breakspear, Dynamic models of large-scale brain activity, Nat. Neurosci. 20, 340 (2017) [CrossRef] [Google Scholar]
  39. T. Schreiber, A. Schmitz, Surrogate time series, Physica D 142, 346 (2000) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Paluš, From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics, Contemp. Phys. 48, 307 (2007) [CrossRef] [Google Scholar]
  41. M.J. Van der Heyden, C. Diks, J.P.M. Pijn, D.N. Velis, Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy, Phys. Lett. A 216, 283 (1996) [CrossRef] [Google Scholar]
  42. M.C. Casdagli, L.D. Iasemidis, R.S. Savit, R.L. Gilmore, S. Roper, J.C. Sackellares, Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy, Electroencephalogr. Clin. Neurophysiol. 102, 98 (1997) [CrossRef] [Google Scholar]
  43. J.P. Pijn, D.N. Velis, M.J. van der Heyden, J. DeGoede, C.W.M. van Veelen, Lopes da Silva, F.H.: Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings, Brain Topogr. 9, 249 (1997) [CrossRef] [Google Scholar]
  44. M. Feucht, U. Möller, H. Witte, K. Schmidt, M. Arnold, F. Benninger, K. Steinberger, M.H. Friedrich, Nonlinear dynamics of 3 Hz spike-and-wave discharges recorded during typical absence seizures in children, Cereb. Cortex 8, 524 (1998) [CrossRef] [Google Scholar]
  45. J.L. Perez Velazquez, H. Khosravani, A. Lozano, B.L. Bardakijan, P.L. Carlen, R. Wennberg, Type III intermittency in human partial epilepsy, Eur. J. Neurosci. 11, 2571 (1999) [CrossRef] [Google Scholar]
  46. R.G. Andrzejak, G. Widman, K. Lehnertz, P. David, C.E. Elger, The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy, Epilepsy Res. 44, 129 (2001) [CrossRef] [Google Scholar]
  47. R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E 64, 061907 (2001) [CrossRef] [Google Scholar]
  48. T. Gautama, D.P. Mandic, M.M. Van Hulle, Indications of nonlinear structures in brain electrical activity, Phys. Rev. E 67, 046204 (2003) [CrossRef] [Google Scholar]
  49. C. Rieke, F. Mormann, R.G. Andrzejak, T. Kreuz, P. David, C.E. Elger, K. Lehnertz, Discerning nonstationarity from nonlinearity in seizure-free and preseizure EEG recordings from epilepsy patients, IEEE Trans. Biomed. Eng. 50, 634 (2003) [CrossRef] [Google Scholar]
  50. R.G. Andrzejak, F. Mormann, G. Widmann, T. Kreuz, C.E. Elger, K. Lehnertz, Improved spatial characterization of the epileptic brain by focusing on nonlinearity, Epilepsy Res. 69, 30 (2006) [CrossRef] [Google Scholar]
  51. R.G. Andrzejak, K. Schindler, C. Rummel, Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients, Phys. Rev. E 86, 046206 (2012) [CrossRef] [Google Scholar]
  52. J.F. Donges, R.V. Donner, J. Kurths, Testing time series irreversibility using complex network methods, Europhys. Lett. 102, 10004 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  53. M. Anvari, M.R.R. Tabar, J. Peinke, K. Lehnertz, Disentangling the stochastic behavior of complex time series, Sci. Rep. 6, 35435 (2016) [CrossRef] [Google Scholar]
  54. K. Schindler, C. Rummel, R.G. Andrzejak, M. Goodfellow, F. Zubler, E. Abela, R. Wiest, C. Pollo, A. Steimer, H. Gast, Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone, Clin. Neurophysiol. 127, 3051 (2016) [CrossRef] [Google Scholar]
  55. M. Rizzi, I. Weissberg, D.Z. Milikovsky, A. Friedman, Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis, Sci. Rep. 6, 35510 (2016) [CrossRef] [Google Scholar]
  56. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, UK, 2001) [CrossRef] [Google Scholar]
  57. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366, 1 (2002) [CrossRef] [MathSciNet] [Google Scholar]
  58. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep. 469, 93 (2008) [CrossRef] [MathSciNet] [Google Scholar]
  59. Y. Tang, F. Qian, H. Gao, J. Kurths, Synchronization in complex networks and its application – a survey of recent advances and challenges, Annu. Rev. Control 38, 184 (2014) [CrossRef] [Google Scholar]
  60. G.E.P. Box, G.M. Jenkins, Time series analysis: forecasting and control, revised ed (Holden-Day, San Francisco, 1993) [Google Scholar]
  61. D. Brillinger, Time series: data analysis and theory (Holden-Day, San Francisco, USA, 1981) [Google Scholar]
  62. M.B. Priestley, Nonlinear and non-stationary time series analysis (Academic Press, London, 1988) [Google Scholar]
  63. B. Boashash, Time frequency signal analysis: methods and applications (Longman Cheshire, Melbourne, 1992) [Google Scholar]
  64. H.D.I. Abarbanel, Analysis of observed chaotic data (Springer, New York, 1996) [CrossRef] [Google Scholar]
  65. J.S. Bendat, A.G. Piersol, Random data analysis and measurement procedure (Wiley, New York, 2000) [Google Scholar]
  66. H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, UK, 2003), 2nd edn [CrossRef] [Google Scholar]
  67. E. Pereda, R. Quian Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals, Prog. Neurobiol. 77, 1 (2005) [CrossRef] [PubMed] [Google Scholar]
  68. C.J. Stam, Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clin. Neurophysiol. 116, 2266 (2005) [CrossRef] [PubMed] [Google Scholar]
  69. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Causality detection based on information-theoretic approaches in time series analysis, Phys. Rep. 441, 1 (2007) [CrossRef] [Google Scholar]
  70. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Phys. Rep. 438, 237 (2007) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  71. H. Osterhage, K. Lehnertz, Nonlinear time series analysis in epilepsy, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3305 (2007) [CrossRef] [Google Scholar]
  72. K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, T. Wagner, Synchronization phenomena in human epileptic brain networks, J. Neurosci. Methods 183, 42 (2009) [CrossRef] [PubMed] [Google Scholar]
  73. R. Friedrich, J. Peinke, M. Sahimi, M.R.R. Tabar, Approaching complexity by stochastic methods: from biological systems to turbulence, Phys. Rep. 506, 87 (2011) [CrossRef] [Google Scholar]
  74. K. Lehnertz, Assessing directed interactions from neurophysiological signals – an overview, Physiol. Meas. 32, 1715 (2011) [CrossRef] [PubMed] [Google Scholar]
  75. P. Clemson, G. Lancaster, A. Stefanovska, Reconstructing time-dependent dynamics, Proc. IEEE 104, 223 (2016) [CrossRef] [Google Scholar]
  76. A. Porta, L. Faes, Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience, Proc. IEEE 104, 282 (2016) [CrossRef] [Google Scholar]
  77. W.S. Pritchard, D.S. Duke, Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis, Int. J. Neurosci. 67, 31 (1992) [CrossRef] [Google Scholar]
  78. K. Lehnertz, R.G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman, C.E. Elger, Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. 18, 209 (2001) [CrossRef] [Google Scholar]
  79. A. Eke, P. Herman, L. Kocsis, L.R. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiol. Meas. 23, 1 (2002) [CrossRef] [Google Scholar]
  80. J. Kwapień, S. Drożdż, Physical approach to complex systems, Phys. Rep. 515, 115 (2012) [CrossRef] [Google Scholar]
  81. A. Di Ieva, F. Grizzi, H. Jelinek, A.J. Pellionisz, G.A. Losa, Fractals in the neurosciences, part I: general principles and basic neurosciences, Neuroscientist 20, 403 (2014) [CrossRef] [Google Scholar]
  82. A. Di Ieva, F.J. Esteban, F. Grizzi, W. Klonowski, M. Martín-Landrove, Fractals in the neurosciences, part II: clinical applications and future perspectives, Neuroscientist 21, 30 (2015) [CrossRef] [Google Scholar]
  83. R. Hegger, H. Kantz, L. Matassini, T. Schreiber, Coping with non-stationarity by overembedding, Phys. Rev. Lett. 84, 4092 (2000) [CrossRef] [Google Scholar]
  84. C. Rieke, K. Sternickel, R.G. Andrzejak, C.E. Elger, P. David, K. Lehnertz, Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems, Phys. Rev. Lett. 88, 244102 (2002) [CrossRef] [Google Scholar]
  85. E.C.A. Hansen, D. Battaglia, A. Spiegler, G. Deco, V.K. Jirsa, Functional connectivity dynamics: Modeling the switching behavior of the resting state, NeuroImage 105, 525 (2015) [CrossRef] [Google Scholar]
  86. J.S. Barlow, Methods of analysis of nonstationary EEGs with emphasis on segmentation techniques: a comparative review, J. Clin. Neurophysiol. 2, 267 (1985) [CrossRef] [Google Scholar]
  87. S. Blanco, H. Garcia, R. Quian Quiroga, L. Romanelli, O.A. Rosso, Stationarity of the EEG series, IEEE Eng. Med. Biol. 4, 395 (1995) [CrossRef] [Google Scholar]
  88. T. Schreiber, Detecting and analysing nonstationarity in a time series using nonlinear cross predictions, Phys. Rev. Lett. 78, 843 (1997) [CrossRef] [Google Scholar]
  89. A. Witt, J. Kurths, A. Pikovsky, Testing stationarity in time series, Phys. Rev. E 58, 1800 (1998) [CrossRef] [Google Scholar]
  90. C. Rieke, R.G. Andrzejak, F. Mormann, K. Lehnertz, Improved statistical test for nonstationarity using recurrence time statistics, Phys. Rev. E 69, 046111 (2004) [CrossRef] [Google Scholar]
  91. T. Dikanev, D. Smirnov, R. Wennberg, J. Velazquez, B. Bezruchko, EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis, Clin. Neurophysiol. 116, 1796 (2005) [CrossRef] [Google Scholar]
  92. A.Y. Kaplan, A.A. Fingelkurts, A.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky, Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges, Signal Proc. 85, 2190 (2005) [CrossRef] [Google Scholar]
  93. S. Tong, Z. Li, Y. Zhu, N.V. Thakor, Describing the nonstationarity level of neurological signals based on quantifications of time-frequency representation, IEEE Trans. Biomed. Eng. 54, 1780 (2007) [CrossRef] [Google Scholar]
  94. S.J. Luck, An introduction to the event-related potential technique (MIT Press, Cambridge, MA, 2005) [Google Scholar]
  95. R.G. Andrzejak, A. Ledberg, G. Deco, Detecting event-related time-dependent directional couplings, New J. Phys. 8, 6 (2006) [CrossRef] [Google Scholar]
  96. S. Łeski, D.K. Wójcik, Inferring coupling strength from event-related dynamics, Phys. Rev. E 78, 41918 (2008) [CrossRef] [Google Scholar]
  97. M. Martini, T.A. Kranz, T. Wagner, K. Lehnertz, Inferring directional interactions from transient signals with symbolic transfer entropy, Phys. Rev. E 83, 011919 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  98. P. Wollstadt, M. Martinez-Zarzuela, R. Vicente, F.J. Diaz-Pernas, M. Wibral, Efficient transfer entropy analysis of non-stationary neural time series, PLOS ONE 9, 1 (2014) [CrossRef] [Google Scholar]
  99. J.L. Rodgers, W.A. Nicewander, Thirteen ways to look at the correlation coefficient, Am. Stat. 42, 59 (1988) [CrossRef] [Google Scholar]
  100. C.W.J. Granger, Investigating causal relations by econometric models and cross–spectral methods, Econometrica 37, 424 (1969) [CrossRef] [Google Scholar]
  101. M. Eichler, A graphical approach for evaluating effective connectivity in neural systems, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 360, 953 (2005) [CrossRef] [Google Scholar]
  102. T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000) [CrossRef] [PubMed] [Google Scholar]
  103. Z. Liu, Measuring the degree of synchronization from time series data, Europhys. Lett. 68, 19 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
  104. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators, Phys. Rev. E 64, 045202 (2001) [CrossRef] [Google Scholar]
  105. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D 144, 358 (2000) [CrossRef] [Google Scholar]
  106. J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D 134, 419 (1999) [CrossRef] [Google Scholar]
  107. R. Quian Quiroga, J. Arnhold, P. Grassberger, Learning driver-response relationships from synchronization patterns, Phys. Rev. E 61, 5142 (2000) [CrossRef] [Google Scholar]
  108. R.G. Andrzejak, D. Chicharro, K. Lehnertz, F. Mormann, Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates, Phys. Rev. E 83, 046203 (2011) [CrossRef] [Google Scholar]
  109. K.J. Friston, Functional and effective connectivity: a review, Brain Connect. 1, 13 (2011) [CrossRef] [PubMed] [Google Scholar]
  110. O. David, D. Cosmelli, K.J. Friston, Evaluation of different measures of functional connectivity using a neural mass model, NeuroImage 21, 659 (2004) [CrossRef] [Google Scholar]
  111. T. Kreuz, F. Mormann, R.G. Andrzejak, A. Kraskov, K. Lehnertz, P. Grassberger, Measuring synchronization in coupled model systems: a comparison of different approaches, Physica D 225, 29 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  112. R. Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signals, Phys. Rev. E 65, 041903 (2002) [CrossRef] [Google Scholar]
  113. H. Osterhage, F. Mormann, M. Staniek, K. Lehnertz, Measuring synchronization in the epileptic brain: a comparison of different approaches, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3539 (2007) [CrossRef] [Google Scholar]
  114. H. Dickten, S. Porz, C.E. Elger, K. Lehnertz, Weighted and directed interactions in evolving large-scale epileptic brain networks, Sci. Rep. 6, 34824 (2016) [CrossRef] [Google Scholar]
  115. K. Lehnertz, H. Dickten, Assessing directionality and strength of coupling through symbolic analysis: an application to epilepsy patients, Philos. Trans. R. Soc. A 373, 20140094 (2015) [CrossRef] [Google Scholar]
  116. M. Paluš, M. Vejmelka, Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections, Phys. Rev. E 75, 056211 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  117. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Measuring the directionality of coupling: phase versus state space dynamics and application to EEG time series, Int. J. Neural. Syst. 17, 139 (2007) [CrossRef] [PubMed] [Google Scholar]
  118. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls, Phys. Rev. E 77, 011914 (2008) [CrossRef] [Google Scholar]
  119. M. Staniek, K. Lehnertz, Symbolic transfer entropy, Phys. Rev. Lett. 100, 158101 (2008) [CrossRef] [PubMed] [Google Scholar]
  120. K.A. Blaha, A. Pikovsky, M. Rosenblum, M.T. Clark, C.G. Rusin, J.L. Hudson, Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators, Phys. Rev. E 84, 046201 (2011) [CrossRef] [Google Scholar]
  121. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise, Phys. Rev. Lett. 109, 024101 (2012) [CrossRef] [PubMed] [Google Scholar]
  122. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability, Nat. Commun. 4, 2418 (2013) [CrossRef] [PubMed] [Google Scholar]
  123. T. Stankovski, V. Ticcinelli, P.V.E. McClintock, A. Stefanovska, Coupling functions in networks of oscillators, New J. Phys. 17, 035002 (2015) [CrossRef] [Google Scholar]
  124. J. Wilting, K. Lehnertz, Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations, Eur. Phys. J. B 88, 193 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  125. M. Eichler, R. Dahlhaus, J. Sandkühler, Partial correlation analysis for the identification of synaptic connections, Biol. Cybern. 89, 289 (2003) [CrossRef] [Google Scholar]
  126. Y. Chen, G. Rangarajan, J. Feng, M. Ding, Analyzing multiple nonlinear time series with extended Granger causality, Phys. Lett. A 324, 26 (2004) [CrossRef] [Google Scholar]
  127. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Partial phase synchronization for multivariate synchronizing systems, Phys. Rev. Lett. 96, 208103 (2006) [CrossRef] [PubMed] [Google Scholar]
  128. B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C.H. Lücking, R. Dahlhaus, J. Timmer, Testing for directed influences among neural signals using partial directed coherence, J. Neurosci. Methods 152, 210 (2006) [CrossRef] [Google Scholar]
  129. S. Frenzel, B. Pompe, Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett. 99, 204101 (2007) [CrossRef] [Google Scholar]
  130. D.A. Smirnov, B.P. Bezruchko, Detection of couplings in ensembles of stochastic oscillators, Phys. Rev. E 79, 046204 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  131. V.A. Vakorin, O.A. Krakovska, A.R. McIntosh, Confounding effects of indirect connections on causality estimation, J. Neurosci. Methods 184, 152 (2009) [CrossRef] [PubMed] [Google Scholar]
  132. J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104, 038701 (2010) [CrossRef] [PubMed] [Google Scholar]
  133. M. Jalili, M.G. Knyazeva, Constructing brain functional networks from EEG: partial and unpartial correlations, J. Integr. Neurosci. 10, 213 (2011) [CrossRef] [Google Scholar]
  134. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect coupling by means of recurrences, Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 1099 (2011) [CrossRef] [Google Scholar]
  135. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Escaping the curse of dimensionality in estimating multivariate transfer entropy, Phys. Rev. Lett. 108, 258701 (2012) [CrossRef] [Google Scholar]
  136. S. Stramaglia, G.-R. Wu, M. Pellicoro, D. Marinazzo, Expanding the transfer entropy to identify information circuits in complex systems, Phys. Rev. E 86, 066211 (2012) [CrossRef] [Google Scholar]
  137. D. Kugiumtzis, Partial transfer entropy on rank vectors, Eur. Phys. J. Special Topics 222, 401 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  138. L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi, H. Witte, Time-variant partial directed coherence for analysing connectivity: a methodological study, Philos. Trans. R. Soc. A 371, 20110616 (2013) [CrossRef] [Google Scholar]
  139. R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller, C. Grebogi, C. Schwarzbauer, J. Timmer, B. Schelter, The impact of latent confounders in directed network analysis in neuroscience, Philos. Trans. R. Soc. A 371, 20110612 (2013) [CrossRef] [Google Scholar]
  140. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys. 16, 085013 (2014) [CrossRef] [Google Scholar]
  141. H. Elsegai, H. Shiells, M. Thiel, B. Schelter, Network inference in the presence of latent confounders: the role of instantaneous causalities, J. Neurosci. Methods 245, 91 (2015) [CrossRef] [Google Scholar]
  142. L. Faes, D. Kugiumtzis, G. Nollo, F. Jurysta, D. Marinazzo, Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E 91, 032904 (2015) [CrossRef] [Google Scholar]
  143. W. Mader, M. Mader, J. Timmer, M. Thiel, B. Schelter, Networks: On the relation of bi-and multivariate measures, Sci. Rep. 5, 10805 (2015) [CrossRef] [Google Scholar]
  144. J. Zhao, Y. Zhou, X. Zhang, L. Chen, Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA 113, 5130 (2016) [CrossRef] [Google Scholar]
  145. Z. Albo, G.V. Di Prisco, Y. Chen, G. Rangarajan, W. Truccolo, J. Feng, R.P. Vertes, M. Ding, Is partial coherence a viable technique for identifying generators of neural oscillations? Biol. Cybern. 90, 318 (2004) [CrossRef] [Google Scholar]
  146. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Identifying true brain interaction from EEG data using the imaginary part of coherency, Clin. Neurophysiol. 115, 2292 (2004) [CrossRef] [PubMed] [Google Scholar]
  147. T. Zerenner, P. Friederichs, K. Lehnertz, A. Hense, A Gaussian graphical model approach to climate networks, Chaos 24, 023103 (2014) [CrossRef] [Google Scholar]
  148. N. Rubido, A.C. Marti, E. Bianco-Martinez, C. Grebogi, M.S. Baptista, C. Masoller, Exact detection of direct links in networks of interacting dynamical units, New J. Phys. 16, 093010 (2014) [CrossRef] [Google Scholar]
  149. T. Rings, K. Lehnertz, Distinguishing between direct and indirect directional couplings in large oscillator networks: partial or non-partial phase analyses? Chaos 26, 093106 (2016) [CrossRef] [Google Scholar]
  150. R. Guimerà, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks, Proc. Natl. Acad. Sci. USA 106, 22073 (2009) [CrossRef] [Google Scholar]
  151. B. Barzel, A.-L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31, 720 (2013) [CrossRef] [PubMed] [Google Scholar]
  152. V. Pernice, S. Rotter, Reconstruction of sparse connectivity in neural networks from spike train covariances, J. Stat. Mech. Theor. Exp. 2013, 03008 (2013) [CrossRef] [Google Scholar]
  153. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Reconstructing propagation networks with natural diversity and identifying hidden sources, Nat. Commun. 5, 4323 (2014) [Google Scholar]
  154. J. Runge, Quantifying information transfer and mediation along causal pathways in complex systems, Phys. Rev. E 92, 062829 (2015) [CrossRef] [Google Scholar]
  155. Y.V. Zaytsev, A. Morrison, M. Deger, Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity, J. Comput. Neurosci. 39, 77 (2015) [CrossRef] [Google Scholar]
  156. L. Pan, T. Zhou, L. Lü, C.-K. Hu, Predicting missing links and identifying spurious links via likelihood analysis, Sci. Rep. 6, 22955 (2016) [CrossRef] [Google Scholar]
  157. C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources, Hum. Brain Mapp. 28, 1178 (2007) [CrossRef] [PubMed] [Google Scholar]
  158. M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, C.M.A. Pennartz, An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias, NeuroImage 55, 1548 (2011) [CrossRef] [Google Scholar]
  159. C.J. Stam, E.C.W. van Straaten, Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics, NeuroImage 62, 1415 (2012) [CrossRef] [Google Scholar]
  160. M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C.J. Stam, P. Fuhr, Reproducibility of functional connectivity and graph measures based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) derived from high resolution EEG, PLOS ONE 9, 108648 (2014) [CrossRef] [Google Scholar]
  161. D. Yu, S. Boccaletti, Real-time estimation of interaction delays, Phys. Rev. E 80, 036203 (2009) [CrossRef] [Google Scholar]
  162. L.R. Peraza, A.U.R. Asghar, G. Green, D.M. Halliday, Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index, J. Neurosci. Methods 207, 189 (2012) [CrossRef] [Google Scholar]
  163. S.M. Gordon, P.J. Franaszczuk, W.D. Hairston, M. Vindiola, K. McDowell, Comparing parametric and nonparametric methods for detecting phase synchronization in EEG, J. Neurosci. Methods 212, 247 (2013) [CrossRef] [Google Scholar]
  164. S. Porz, M. Kiel, K. Lehnertz, Can spurious indications for phase synchronization due to superimposed signals be avoided? Chaos 24, 033112 (2014) [CrossRef] [PubMed] [Google Scholar]
  165. G.L. Colclough, M.W. Woolrich, P.K. Tewarie, M.J. Brookes, A.J. Quinn, S.M. Smith, How reliable are MEG resting-state connectivity metrics? NeuroImage 138, 284 (2016) [CrossRef] [Google Scholar]
  166. L. Cimponeriu, M. Rosenblum, A. Pikovsky, Estimation of delay in coupling from time series, Phys. Rev. E 70, 046213 (2004) [CrossRef] [Google Scholar]
  167. N. Wessel, A. Suhrbier, M. Riedl, N. Marwan, H. Malberg, G. Bretthauer, T. Penzel, J. Kurths, Detection of time-delayed interactions in biosignals using symbolic coupling traces, Europhys. Lett. 87, 10004 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  168. A.N. Silchenko, I. Adamchic, N. Pawelczyk, C. Hauptmann, M. Maarouf, V. Sturm, P.A. Tass, Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems, J. Neurosci. Methods 191, 32 (2010) [CrossRef] [Google Scholar]
  169. H. Dickten, K. Lehnertz, Identifying delayed directional couplings with symbolic transfer entropy, Phys. Rev. E 90, 062706 (2014) [CrossRef] [Google Scholar]
  170. H. Ye, E.R. Deyle, L.J. Gilarranz, G. Sugihara, Distinguishing time-delayed causal interactions using convergent cross mapping, Sci. Rep. 5, 14750 (2015) [CrossRef] [Google Scholar]
  171. R.G. Andrzejak, T. Kreuz, Characterizing unidirectional couplings between point processes and flows, Europhys. Lett. 96, 50012 (2011) [CrossRef] [EDP Sciences] [Google Scholar]
  172. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10, 186 (2009) [CrossRef] [PubMed] [Google Scholar]
  173. K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, S. Porz, Evolving networks in the human epileptic brain, Physica D 267, 7 (2014) [CrossRef] [Google Scholar]
  174. D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, J.M. Buldú, Functional brain networks: great expectations, hard times and the big leap forward, Philos. Trans. R. Soc. B 369, 20130525 (2014) [CrossRef] [Google Scholar]
  175. S. Bialonski, M.-T. Horstmann, K. Lehnertz, From brain to earth and climate systems: Small-world interaction networks or not? Chaos 20, 013134 (2010) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  176. B.C.M. van Wijk, C.J. Stam, A. Daffertshofer, Comparing brain networks of different size and connectivity density using graph theory, PLOS ONE 5, 13701 (2010) [CrossRef] [PubMed] [Google Scholar]
  177. J. Hlinka, D. Hartman, M. Paluš, Small-world topology of functional connectivity in randomly connected dynamical systems, Chaos 22, 033107 (2012) [CrossRef] [Google Scholar]
  178. A. Joudaki, N. Salehi, M. Jalili, M.G. Knyazeva, EEG-based functional brain networks: does the network size matter? PLOS ONE 7, 35673 (2012) [CrossRef] [Google Scholar]
  179. A. Fornito, A. Zalesky, M. Breakspear, Graph analysis of the human connectome: promise, progress, and pitfalls, NeuroImage 80, 426 (2013) [CrossRef] [Google Scholar]
  180. M.L. Stanley, M.N. Moussa, B. Paolini, R.G. Lyday, J.H. Burdette, P.J. Laurienti, Defining nodes in complex brain networks, Front. Comput. Neurosci. 7, 169 (2013) [CrossRef] [Google Scholar]
  181. V. Wens, Investigating complex networks with inverse models: analytical aspects of spatial leakage and connectivity estimation, Phys. Rev. E 91, 012823 (2015) [CrossRef] [Google Scholar]
  182. D. Papo, M. Zanin, J.H. Martínez, J.M. Buldú, Beware of the small-world neuroscientist! Front. Hum. Neurosci. 10, 96 (2016) [Google Scholar]
  183. B.S. Anderson, C. Butts, K. Carley, The interaction of size and density with graph-level indices, Soc. Netw. 21, 239 (1999) [CrossRef] [Google Scholar]
  184. A.A. Ioannides, Dynamic functional connectivity, Curr. Opin. Neurobiol. 17, 161 (2007) [CrossRef] [Google Scholar]
  185. M.A. Kramer, U.T. Eden, S.S. Cash, E.D. Kolaczyk, Network inference with confidence from multivariate time series, Phys. Rev. E 79, 061916 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  186. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage 52, 1059 (2010) [CrossRef] [PubMed] [Google Scholar]
  187. M. Zanin, P. Sousa, D. Papo, R. Bajo, J. Garcia-Prieto, F. del Pozo, E. Menasalvas, S. Boccaletti, Optimizing functional network representation of multivariate time series, Sci. Rep. 2, 630 (2012) [CrossRef] [PubMed] [Google Scholar]
  188. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58, 765 (1986) [CrossRef] [Google Scholar]
  189. U. Lee, S. Kim, K.-Y. Jung, Classification of epilepsy types through global network analysis of scalp electroencephalograms, Phys. Rev. E 73, 041920 (2006) [CrossRef] [Google Scholar]
  190. C.J. Ortega, R.G. Sola, J. Pastor, Complex network analysis of human ECoG data, Neurosci. Lett. 447, 129 (2008) [CrossRef] [Google Scholar]
  191. C. Stam, P. Tewarie, E. Van Dellen, E. Van Straaten, A. Hillebrand, P. Van Mieghem, The trees and the forest: characterization of complex brain networks with minimum spanning trees, Int. J. Psychophysiol. 92, 129 (2014) [CrossRef] [Google Scholar]
  192. G. Ansmann, K. Lehnertz, Surrogate-assisted analysis of weighted functional brain networks, J. Neurosci. Methods 208, 165 (2012) [CrossRef] [Google Scholar]
  193. P. Macdonald, E. Almaas, A.-L. Barabási, Minimum spanning trees of weighted scale-free networks, Europhys. Lett. 72, 308 (2005) [CrossRef] [EDP Sciences] [Google Scholar]
  194. F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, A. Tocci, S. Salinari, M. Marciani, H. Witte, A. Colosimo, F. Babiloni, Brain network analysis from high-resolution EEG recordings by the application of theoretical graph indexes, IEEE Trans. Neural Syst. Rehab. Eng. 16, 442 (2008) [CrossRef] [Google Scholar]
  195. W.J. Marshall, C.L. Lackner, P. Marriott, D.L. Santesso, S.J. Segalowitz, Using phase shift Granger causality to measure directed connectivity in EEG recordings, Brain Connect. 4, 826 (2014) [CrossRef] [Google Scholar]
  196. M.H.I. Shovon, N. Nandagopal, R. Vijayalakshmi, J.T. Du, B. Cocks, Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy, Neural Process. Lett. 45, 807 (2016) [CrossRef] [Google Scholar]
  197. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep. 424, 175 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  198. S. Fortunato, Community detection in graphs, Phys. Rep. 486, 75 (2010) [CrossRef] [MathSciNet] [Google Scholar]
  199. M. Barthélemy, Spatial networks, Phys. Rep. 499, 1 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  200. M.E.J. Newman, Communities, modules and large-scale structure in networks, Nat. Phys. 8, 25 (2012) [CrossRef] [Google Scholar]
  201. S. Bialonski, M. Wendler, K. Lehnertz, Unraveling spurious properties of interaction networks with tailored random networks, PLOS ONE 6, 22826 (2011) [CrossRef] [Google Scholar]
  202. J. Saramäki, M. Kivelä, J.P. Onnela, K. Kaski, J. Kertész, Generalizations of the clustering coefficient to weighted complex networks, Phys. Rev. E 75, 027105 (2007) [CrossRef] [Google Scholar]
  203. D.S. Bassett, E. Bullmore, Small-world brain networks, Neuroscientist 12, 512 (2006) [CrossRef] [PubMed] [Google Scholar]
  204. J.C. Reijneveld, S.C. Ponten, H.W. Berendse, C.J. Stam, The application of graph theoretical analysis to complex networks in the brain, Clin. Neurophysiol. 118, 2317 (2007) [CrossRef] [Google Scholar]
  205. C.J. Stam, Modern network science of neurological disorders, Nat. Rev. Neurosci. 15, 683 (2014) [CrossRef] [Google Scholar]
  206. C.C. Hilgetag, A. Goulas, Is the brain really a small-world network? Brain Struct. Funct. 221, 2361 (2016) [CrossRef] [Google Scholar]
  207. M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) [CrossRef] [PubMed] [Google Scholar]
  208. S. Bialonski, K. Lehnertz, Assortative mixing in functional brain networks during epileptic seizures, Chaos 23, 033139 (2013) [CrossRef] [PubMed] [Google Scholar]
  209. F.M. Atay, T. Bıyıkoğlu, J. Jost, Network synchronization: Spectral versus statistical properties, Physica D 224, 35 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  210. F. Comellas, S. Gago, Synchronizability of complex networks, J. Phys. A 40, 4483 (2007) [CrossRef] [Google Scholar]
  211. D. Koschützki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, Centrality indices, in Network analysis. Lecture Notes in Computer Science, edited by U. Brandes, T. Erlebach (Springer, Berlin, Heidelberg, 2005), Vol. 3418, p. 16 [CrossRef] [Google Scholar]
  212. M.-T. Kuhnert, C. Geier, C.E. Elger, K. Lehnertz, Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches, Chaos 22, 023142 (2012) [CrossRef] [Google Scholar]
  213. B. Efron, Large-scale simultaneous hypothesis testing: the choice of a null hypothesis, JASA 99, 465 (2004) [Google Scholar]
  214. B. Efron, The jackknife, the bootstrap and other resampling plans (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1982) [CrossRef] [Google Scholar]
  215. R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, T. Kreuz, Bivariate surrogate techniques: necessity, strengths, and caveats, Phys. Rev. E 68, 066202 (2003) [CrossRef] [Google Scholar]
  216. M. Small, D. Yu, R.G. Harrison, Surrogate test for pseudoperiodic time series data, Phys. Rev. Lett. 87, 188101 (2001) [CrossRef] [Google Scholar]
  217. K.T. Dolan, A. Neiman, Surrogate analysis of coherent multichannel data, Phys. Rev. E 65, 026108 (2002) [CrossRef] [Google Scholar]
  218. L. Faes, G.D. Pinna, A. Porta, R. Maestri, G. Nollo, Surrogate data analysis for assessing the significance of the coherence function, IEEE Trans. Biomed. Eng. 51, 1156 (2004) [CrossRef] [Google Scholar]
  219. M. Breakspear, M. Brammer, P.A. Robinson, Construction of multivariate surrogate sets from nonlinear data using the wavelet transform, Physica D 182, 1 (2003) [CrossRef] [Google Scholar]
  220. C.J. Keylock, A wavelet-based method for surrogate data generation, Physica D 225, 219 (2007) [CrossRef] [Google Scholar]
  221. M. Paluš, Bootstrapping multifractals: Surrogate data from random cascades on wavelet dyadic trees, Phys. Rev. Lett. 101, 134101 (2008) [CrossRef] [Google Scholar]
  222. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchronization: twin surrogates revisited, Chaos 19, 015108 (2009) [CrossRef] [Google Scholar]
  223. T. Nakamura, M. Small, Y. Hirata, Testing for nonlinearity in irregular fluctuations with long-term trends, Phys. Rev. E 74, 026205 (2006) [CrossRef] [Google Scholar]
  224. T. Nakamura, T. Tanizawa, M. Small, Constructing networks from a dynamical system perspective for multivariate nonlinear time series, Phys. Rev. E 93, 032323 (2016) [CrossRef] [Google Scholar]
  225. T. Suzuki, T. Ikeguchi, M. Suzuki, Effects of data windows on the methods of surrogate data, Phys. Rev. E 71, 056708 (2005) [CrossRef] [Google Scholar]
  226. J. Lucio, R. Valdés, L. Rodríguez, Improvements to surrogate data methods for nonstationary time series, Phys. Rev. E 85, 056202 (2012) [CrossRef] [Google Scholar]
  227. A.M. Bronstein, M.M. Bronstein, R. Kimmel, Efficient computation of isometry-invariant distances between surfaces, SIAM J. Sci. Comput. 28, 1812 (2006) [CrossRef] [Google Scholar]
  228. M. Muskulus, S. Houweling, S. Verduyn-Lunel, A. Daffertshofer, Functional similarities and distance properties, J. Neurosci. Methods 183, 31 (2009) [CrossRef] [Google Scholar]
  229. F. Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11, 417 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  230. H. Lee, M.K. Chung, H. Kang, B.-N. Kim, D.S. Lee, Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2011), pp. 302–309 [Google Scholar]
  231. D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Robust detection of dynamic community structure in networks, Chaos 23, 013142 (2013) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  232. Y. Hulovatyy, H. Chen, T. Milenković, Exploring the structure and function of temporal networks with dynamic graphlets, Bioinformatics 31, 171 (2015) [CrossRef] [PubMed] [Google Scholar]
  233. N. Dianati, Unwinding the hairball graph: pruning algorithms for weighted complex networks, Phys. Rev. E 93, 012304 (2016) [CrossRef] [Google Scholar]
  234. M.J. Cook, T.J. O'Brien, S.F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D'Souza, R. Yerra, J. Archer, L. Litewka, S. Hosking, P. Lightfoot, V. Ruedebusch, W.D. Sheffield, D. Snyder, K. Leyde, D. Himes, Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study, Lancet Neurol. 12, 563 (2013) [CrossRef] [Google Scholar]
  235. F. Mormann, R. Andrzejak, C.E. Elger, K. Lehnertz, Seizure prediction: the long and winding road, Brain 130, 314 (2007) [CrossRef] [PubMed] [Google Scholar]
  236. S. Ramgopal, S. Thome-Souza, M. Jackson, N.E. Kadish, I.S. Fernández, J. Klehm, W. Bosl, C. Reinsberger, S. Schachter, T. Loddenkemper, Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behav. 37, 291 (2014) [CrossRef] [Google Scholar]
  237. K. Gadhoumi, J.-M. Lina, F. Mormann, J. Gotman, Seizure prediction for therapeutic devices: a review, J. Neurosci. Methods 260, 270 (2016) [CrossRef] [Google Scholar]
  238. K. Lehnertz, H. Dickten, S. Porz, C. Helmstaedter, C.E. Elger, Predictability of uncontrollable multifocal seizures – towards new treatment options, Sci. Rep. 6, 24584 (2016) [CrossRef] [Google Scholar]
  239. R.S. Fisher, Therapeutic devices for epilepsy, Ann. Neurol. 71, 157 (2012) [CrossRef] [Google Scholar]
  240. B.H. Brinkmann, J. Wagenaar, D. Abbot, P. Adkins, S.C. Bosshard, M. Chen, Q.M. Tieng, J. He, F.J. Muñoz-Almaraz, P. Botella-Rocamora, J. Pardo, F. Zamora-Martinez, M. Hills, W. Wu, I. Korshunova, W. Cukierski, C. Vite, E.E. Patterson, B. Litt, G.A. Worrell, Crowdsourcing reproducible seizure forecasting in human and canine epilepsy, Brain 139, 1713 (2016) [CrossRef] [Google Scholar]
  241. H. Feldwisch-Drentrup, M. Staniek, A. Schulze-Bonhage, J. Timmer, H. Dickten, C.E. Elger, B. Schelter, K. Lehnertz, Identification of preseizure states in epilepsy: a data-driven approach for multichannel EEG recordings, Front. Comput. Neurosci. 5, 32 (2011) [CrossRef] [Google Scholar]
  242. M.J. Cook, A. Varsavsky, D. Himes, K. Leyde, S.F. Berkovic, T. O’Brien, I. Mareels, Long memory processes are revealed in the dynamics of the epileptic brain, Front. Neurol. 5, 217 (2014) [Google Scholar]
  243. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data, SIAM Rev. 51, 661 (2009) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  244. E. Taubøll, A. Lundervold, L. Gjerstada, Temporal distribution of seizures in epilepsy, Epilepsy Res. 8, 153 (1991) [CrossRef] [Google Scholar]
  245. P. Suffczynski, S. Kalitzin, F.H.L. da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience 126, 467 (2004) [CrossRef] [Google Scholar]
  246. C. Meisel, A. Schulze-Bonhage, D. Freestone, M.J. Cook, P. Achermann, D. Plenz, Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle, Proc. Natl. Acad. Sci. USA 112, 14694 (2015) [CrossRef] [Google Scholar]
  247. T. Kreuz, R.G. Andrzejak, F. Mormann, A. Kraskov, H. Stögbauer, C.E. Elger, K. Lehnertz, P. Grassberger, Measure profile surrogates: a method to validate the performance of epileptic seizure prediction algorithms, Phys. Rev. E 69, 061915 (2004) [CrossRef] [Google Scholar]
  248. M.A. Kramer, S.S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18, 360 (2012) [CrossRef] [Google Scholar]
  249. M.P. Richardson, Large scale brain models of epilepsy: dynamics meets connectomics, J. Neurol. Neurosurg. Psychiatry 83, 1238 (2012) [CrossRef] [PubMed] [Google Scholar]
  250. K. Schindler, H. Leung, C.E. Elger, K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain 130, 65 (2007) [CrossRef] [Google Scholar]
  251. K. Schindler, C.E. Elger, K. Lehnertz, Increasing synchronization may promote seizure termination: Evidence from status epilepticus, Clin. Neurophysiol. 118, 1955 (2007) [CrossRef] [PubMed] [Google Scholar]
  252. K. Schindler, S. Bialonski, M.-T. Horstmann, C.E. Elger, K. Lehnertz, Evolving functional network properties and synchronizability during human epileptic seizures, Chaos 18, 033119 (2008) [CrossRef] [PubMed] [Google Scholar]
  253. M.A. Kramer, E.D. Kolaczyk, H.E. Kirsch, Emergent network topology at seizure onset in humans, Epilepsy Res. 79, 173 (2008) [CrossRef] [PubMed] [Google Scholar]
  254. S.C. Ponten, L. Douw, F. Bartolomei, J.C. Reijneveld, C.J. Stam, Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analysis, Exp. Neurol. 217, 197 (2009) [CrossRef] [PubMed] [Google Scholar]
  255. M.A. Kramer, W. Truccolo, U.T. Eden, K.Q. Lepage, L.R. Hochberg, E.N. Eskandar, J.R. Madsen, J.W. Lee, A. Maheshwari, E. Halgren, C.J. Chu, S.S. Cash, Human seizures self-terminate across spatial scales via a critical transition, Proc. Natl. Acad. Sci. USA 109, 21116 (2012) [CrossRef] [Google Scholar]
  256. S.P. Burns, S. Santaniello, R.B. Yaffe, C.C. Jouny, N.E. Crone, G.K. Bergey, W.S. Anderson, S.V. Sarma, Network dynamics of the brain and influence of the epileptic seizure onset zone, Proc. Natl. Acad. Sci. USA 111, 5321 (2014) [CrossRef] [Google Scholar]
  257. C. Geier, S. Bialonski, C.E. Elger, K. Lehnertz, How important is the seizure onset zone for seizure dynamics? Seizure 25, 160 (2015) [CrossRef] [PubMed] [Google Scholar]
  258. A.N. Khambhati, K.A. Davis, B.S. Oommen, S.H. Chen, T.H. Lucas, B. Litt, D.S. Bassett, Dynamic network drivers of seizure generation, propagation and termination in human neocortical epilepsy, PLoS Comput. Biol. 11, 1 (2015) [CrossRef] [Google Scholar]
  259. F. Zubler, H. Gast, E. Abela, C. Rummel, M. Hauf, R. Wiest, C. Pollo, K. Schindler, Detecting functional hubs of ictogenic networks, Brain Topogr. 28, 305 (2015) [CrossRef] [Google Scholar]
  260. M. Goodfellow, C. Rummel, E. Abela, M.P. Richardson, K. Schindler, J.R. Terry, Estimation of brain network ictogenicity predicts outcome from epilepsy surgery, Sci. Rep. 6, 29215 (2016) [CrossRef] [Google Scholar]
  261. M.-T. Horstmann, S. Bialonski, N. Noennig, H. Mai, J. Prusseit, J. Wellmer, H. Hinrichs, K. Lehnertz, State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG, Clin. Neurophysiol. 121, 172 (2010) [CrossRef] [Google Scholar]
  262. M.-T. Kuhnert, S. Bialonski, N. Noennig, H. Mai, H. Hinrichs, C. Helmstaedter, K. Lehnertz, Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks, PLOS ONE 8, 80273 (2013) [CrossRef] [Google Scholar]
  263. E. van Diessen, W.J.E.M. Zweiphenning, F.E. Jansen, C.J. Stam, K.P.J. Braun, W.M. Otte, Brain network organization in focal epilepsy: a systematic review and meta-analysis, PLOS ONE 9, 114606 (2014) [CrossRef] [Google Scholar]
  264. M.-T. Kuhnert, C.E. Elger, K. Lehnertz, Long-term variability of global statistical properties of epileptic brain networks, Chaos 20, 043126 (2010) [CrossRef] [Google Scholar]
  265. C. Geier, K. Lehnertz, S. Bialonski, Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing, Front. Hum. Neurosci. 9, 462 (2015) [CrossRef] [Google Scholar]
  266. M.A. Kramer, U.T. Eden, K.Q. Lepage, E.D. Kolaczyk, M.T. Bianchi, S.S. Cash, Emergence of persistent networks in long-term intracranial EEG recordings, J. Neurosci. 31, 15757 (2011) [CrossRef] [Google Scholar]
  267. C. Geier, K. Lehnertz, Long-term variability of importance of brain regions in evolving epileptic brain networks, Chaos 27, 043112 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.