Open Access
Issue
EPJ Nonlinear Biomed. Phys.
Volume 5, 2017
Article Number 2
Number of page(s) 16
Section Physics of Biological Systems and Their Interactions
DOI https://doi.org/10.1051/epjnbp/2017001
Published online 30 June 2017
  1. V. Braitenberg, A. Schütz, Anatomy of the cortex – statistics and geometry (Springer, Berlin, 1991) [Google Scholar]
  2. J.M.J. Murre, D.P.F. Sturdy, The connectivity of the brain: multi-level quantitative analysis, Biol. Cybern. 73, 529 (1995) [CrossRef] [Google Scholar]
  3. A. Volterra, J. Meldolesi, Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci. 6, 626 (2005) [Google Scholar]
  4. V.B. Mountcastle, The columnar organization of the neocortex, Brain 120, 701 (1997) [CrossRef] [Google Scholar]
  5. B. Hutcheon, Y. Yarom, Resonance, oscillation and the intrinsic frequency preferences of neurons, Trends Neurosci. 23, 216 (2000) [CrossRef] [PubMed] [Google Scholar]
  6. A.K. Engel, P. Fries, W. Singer, Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2, 704 (2001) [CrossRef] [PubMed] [Google Scholar]
  7. E. Salinas, T.J. Sejnowski, Correlated neuronal activity and the flow of neural information, Nat. Rev. Neurosci. 2, 539 (2001) [CrossRef] [PubMed] [Google Scholar]
  8. F.J. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brain web: Phase synchronization and large-scale integration, Nat. Rev. Neurosci. 2, 229 (2001) [CrossRef] [PubMed] [Google Scholar]
  9. S. Makeig, S. Debener, J. Onton, A. Delorme, Mining event-related brain dynamics, Trends Cogn. Sci. 8, 204 (2004) [CrossRef] [Google Scholar]
  10. S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci. 14, 277 (2010) [CrossRef] [Google Scholar]
  11. J. Fell, N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12, 105 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci. 13, 407 (2012) [CrossRef] [PubMed] [Google Scholar]
  13. W. Freeman, Neurodynamics: an exploration in mesoscopic brain dynamics (Springer, London, UK, 2012) [Google Scholar]
  14. M.I. Rabinovich, K.J. Friston, P. Varona, eds., Principles of brain dynamics: global state interactions (MIT Press, Cambridge, MA, 2012) [Google Scholar]
  15. M. Siegel, T.H. Donner, A.K. Engel, Spectral fingerprints of large-scale neuronal interactions, Nat. Rev. Neurosci. 13, 121 (2012) [Google Scholar]
  16. A.K. Engel, C. Gerloff, C.C. Hilgetag, G. Nolte, Intrinsic coupling modes: multiscale interactions in ongoing brain activity, Neuron 80, 867 (2013) [CrossRef] [Google Scholar]
  17. H.S. Lee, A. Ghetti, A. Pinto-Duarte, X. Wang, G. Dziewczapolski, F. Galimi, S. Huitron-Resendiz, J.C. Pina-Crespo, A.J. Roberts, I.M. Verma, T.J. Sejnowski, S.F. Heinemann, Astrocytes contribute to gamma oscillations and recognition memory, Proc. Natl. Acad. Sci. USA 111, 3343 (2014) [CrossRef] [Google Scholar]
  18. A. Schnitzler, J. Gross, Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci. 6, 285 (2005) [CrossRef] [PubMed] [Google Scholar]
  19. P.J. Uhlhaas, W. Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron 52, 155 (2006) [CrossRef] [PubMed] [Google Scholar]
  20. N.D. Schiff, T. Nauvel, J.D. Victor, Large-scale brain dynamics in disorders of consciousness, Curr. Opin. Neurobiol. 25, 7 (2014) [CrossRef] [Google Scholar]
  21. E. Niedermeyer, F. Lopes da Silva, Electroencephalography: basic principles, clinical applications, and related fields (Lippincott Williams and Williams, Philadelphia, 2005) [Google Scholar]
  22. M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys. 65, 413 (1993) [CrossRef] [Google Scholar]
  23. S.A. Huettel, A.W. Song, G. McCarthy, Functional magnetic resonance imaging, 3rd edn (Sinauer Associates Sunderland, Sunderland, MA, USA, 2004) [Google Scholar]
  24. F. Rosenow, H. Lüders, Presurgical evaluation of epilepsy, Brain 124, 1683 (2001) [CrossRef] [PubMed] [Google Scholar]
  25. A.K. Engel, C.K.E. Moll, I. Fried, G.A. Ojemann, Invasive recordings from the human brain: clinical insights and beyond, Nat. Rev. Neurosci. 6, 35 (2005) [CrossRef] [PubMed] [Google Scholar]
  26. S.S. Cash, L.R. Hochberg, The emergence of single neurons in clinical neurology, Neuron 86, 79 (2015) [CrossRef] [Google Scholar]
  27. E.F. Chang, Towards large-scale, human-based, mesoscopic neurotechnologies, Neuron 86, 68 (2015) [CrossRef] [Google Scholar]
  28. J. Niediek, J. Boström, C.E. Elger, F. Mormann, Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours, PLOS ONE 11, 0166598 (2016) [CrossRef] [Google Scholar]
  29. S. Panzeri, J.H. Macke, J. Gross, C. Kayser, Neural population coding: combining insights from microscopic and mass signals, Trends Cogn. Sci. 19, 162 (2015) [CrossRef] [Google Scholar]
  30. S. Marom, Neural timescales or lack thereof, Prog. Neurobiol. 90, 16 (2010) [CrossRef] [PubMed] [Google Scholar]
  31. T. Gisiger, Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol. Rev. 76, 161 (2001) [CrossRef] [Google Scholar]
  32. C. Bédard, H. Kröger, A. Destexhe, Does the 1∕f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97, 118102 (2006) [CrossRef] [PubMed] [Google Scholar]
  33. G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol. 1, 15 (2010) [Google Scholar]
  34. B.J. He, Scale-free brain activity: past, present, and future, Trends Cogn. Sci. 18, 480 (2014) [CrossRef] [Google Scholar]
  35. C. Meisel, C. Kuehn, Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures, PLOS ONE 7, 30371 (2012) [CrossRef] [Google Scholar]
  36. P.L. Nunez, R. Srinivasan, Electric fields of the brain: the neurophysics of EEG (Oxford University Press, Oxford, UK, 2006), 2nd edn [CrossRef] [Google Scholar]
  37. K. Lehnertz, J. Arnhold, P. Grassberger, C.E. Elger, Chaos in brain? (World Scientific, Singapore, 2000) [CrossRef] [Google Scholar]
  38. M. Breakspear, Dynamic models of large-scale brain activity, Nat. Neurosci. 20, 340 (2017) [CrossRef] [Google Scholar]
  39. T. Schreiber, A. Schmitz, Surrogate time series, Physica D 142, 346 (2000) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Paluš, From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics, Contemp. Phys. 48, 307 (2007) [CrossRef] [Google Scholar]
  41. M.J. Van der Heyden, C. Diks, J.P.M. Pijn, D.N. Velis, Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy, Phys. Lett. A 216, 283 (1996) [CrossRef] [Google Scholar]
  42. M.C. Casdagli, L.D. Iasemidis, R.S. Savit, R.L. Gilmore, S. Roper, J.C. Sackellares, Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy, Electroencephalogr. Clin. Neurophysiol. 102, 98 (1997) [CrossRef] [Google Scholar]
  43. J.P. Pijn, D.N. Velis, M.J. van der Heyden, J. DeGoede, C.W.M. van Veelen, Lopes da Silva, F.H.: Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings, Brain Topogr. 9, 249 (1997) [CrossRef] [Google Scholar]
  44. M. Feucht, U. Möller, H. Witte, K. Schmidt, M. Arnold, F. Benninger, K. Steinberger, M.H. Friedrich, Nonlinear dynamics of 3 Hz spike-and-wave discharges recorded during typical absence seizures in children, Cereb. Cortex 8, 524 (1998) [CrossRef] [Google Scholar]
  45. J.L. Perez Velazquez, H. Khosravani, A. Lozano, B.L. Bardakijan, P.L. Carlen, R. Wennberg, Type III intermittency in human partial epilepsy, Eur. J. Neurosci. 11, 2571 (1999) [CrossRef] [Google Scholar]
  46. R.G. Andrzejak, G. Widman, K. Lehnertz, P. David, C.E. Elger, The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy, Epilepsy Res. 44, 129 (2001) [CrossRef] [Google Scholar]
  47. R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E 64, 061907 (2001) [CrossRef] [Google Scholar]
  48. T. Gautama, D.P. Mandic, M.M. Van Hulle, Indications of nonlinear structures in brain electrical activity, Phys. Rev. E 67, 046204 (2003) [CrossRef] [Google Scholar]
  49. C. Rieke, F. Mormann, R.G. Andrzejak, T. Kreuz, P. David, C.E. Elger, K. Lehnertz, Discerning nonstationarity from nonlinearity in seizure-free and preseizure EEG recordings from epilepsy patients, IEEE Trans. Biomed. Eng. 50, 634 (2003) [CrossRef] [Google Scholar]
  50. R.G. Andrzejak, F. Mormann, G. Widmann, T. Kreuz, C.E. Elger, K. Lehnertz, Improved spatial characterization of the epileptic brain by focusing on nonlinearity, Epilepsy Res. 69, 30 (2006) [CrossRef] [Google Scholar]
  51. R.G. Andrzejak, K. Schindler, C. Rummel, Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients, Phys. Rev. E 86, 046206 (2012) [CrossRef] [Google Scholar]
  52. J.F. Donges, R.V. Donner, J. Kurths, Testing time series irreversibility using complex network methods, Europhys. Lett. 102, 10004 (2013) [Google Scholar]
  53. M. Anvari, M.R.R. Tabar, J. Peinke, K. Lehnertz, Disentangling the stochastic behavior of complex time series, Sci. Rep. 6, 35435 (2016) [CrossRef] [Google Scholar]
  54. K. Schindler, C. Rummel, R.G. Andrzejak, M. Goodfellow, F. Zubler, E. Abela, R. Wiest, C. Pollo, A. Steimer, H. Gast, Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone, Clin. Neurophysiol. 127, 3051 (2016) [CrossRef] [Google Scholar]
  55. M. Rizzi, I. Weissberg, D.Z. Milikovsky, A. Friedman, Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis, Sci. Rep. 6, 35510 (2016) [CrossRef] [Google Scholar]
  56. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, UK, 2001) [Google Scholar]
  57. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366, 1 (2002) [CrossRef] [MathSciNet] [Google Scholar]
  58. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep. 469, 93 (2008) [CrossRef] [MathSciNet] [Google Scholar]
  59. Y. Tang, F. Qian, H. Gao, J. Kurths, Synchronization in complex networks and its application – a survey of recent advances and challenges, Annu. Rev. Control 38, 184 (2014) [CrossRef] [Google Scholar]
  60. G.E.P. Box, G.M. Jenkins, Time series analysis: forecasting and control, revised ed (Holden-Day, San Francisco, 1993) [Google Scholar]
  61. D. Brillinger, Time series: data analysis and theory (Holden-Day, San Francisco, USA, 1981) [Google Scholar]
  62. M.B. Priestley, Nonlinear and non-stationary time series analysis (Academic Press, London, 1988) [Google Scholar]
  63. B. Boashash, Time frequency signal analysis: methods and applications (Longman Cheshire, Melbourne, 1992) [Google Scholar]
  64. H.D.I. Abarbanel, Analysis of observed chaotic data (Springer, New York, 1996) [Google Scholar]
  65. J.S. Bendat, A.G. Piersol, Random data analysis and measurement procedure (Wiley, New York, 2000) [Google Scholar]
  66. H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, UK, 2003), 2nd edn [Google Scholar]
  67. E. Pereda, R. Quian Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals, Prog. Neurobiol. 77, 1 (2005) [CrossRef] [PubMed] [Google Scholar]
  68. C.J. Stam, Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clin. Neurophysiol. 116, 2266 (2005) [CrossRef] [PubMed] [Google Scholar]
  69. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Causality detection based on information-theoretic approaches in time series analysis, Phys. Rep. 441, 1 (2007) [CrossRef] [Google Scholar]
  70. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Phys. Rep. 438, 237 (2007) [Google Scholar]
  71. H. Osterhage, K. Lehnertz, Nonlinear time series analysis in epilepsy, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3305 (2007) [CrossRef] [Google Scholar]
  72. K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, T. Wagner, Synchronization phenomena in human epileptic brain networks, J. Neurosci. Methods 183, 42 (2009) [CrossRef] [PubMed] [Google Scholar]
  73. R. Friedrich, J. Peinke, M. Sahimi, M.R.R. Tabar, Approaching complexity by stochastic methods: from biological systems to turbulence, Phys. Rep. 506, 87 (2011) [CrossRef] [Google Scholar]
  74. K. Lehnertz, Assessing directed interactions from neurophysiological signals – an overview, Physiol. Meas. 32, 1715 (2011) [CrossRef] [PubMed] [Google Scholar]
  75. P. Clemson, G. Lancaster, A. Stefanovska, Reconstructing time-dependent dynamics, Proc. IEEE 104, 223 (2016) [CrossRef] [Google Scholar]
  76. A. Porta, L. Faes, Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience, Proc. IEEE 104, 282 (2016) [CrossRef] [Google Scholar]
  77. W.S. Pritchard, D.S. Duke, Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis, Int. J. Neurosci. 67, 31 (1992) [CrossRef] [Google Scholar]
  78. K. Lehnertz, R.G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman, C.E. Elger, Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. 18, 209 (2001) [CrossRef] [Google Scholar]
  79. A. Eke, P. Herman, L. Kocsis, L.R. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiol. Meas. 23, 1 (2002) [CrossRef] [Google Scholar]
  80. J. Kwapień, S. Drożdż, Physical approach to complex systems, Phys. Rep. 515, 115 (2012) [CrossRef] [Google Scholar]
  81. A. Di Ieva, F. Grizzi, H. Jelinek, A.J. Pellionisz, G.A. Losa, Fractals in the neurosciences, part I: general principles and basic neurosciences, Neuroscientist 20, 403 (2014) [CrossRef] [Google Scholar]
  82. A. Di Ieva, F.J. Esteban, F. Grizzi, W. Klonowski, M. Martín-Landrove, Fractals in the neurosciences, part II: clinical applications and future perspectives, Neuroscientist 21, 30 (2015) [CrossRef] [Google Scholar]
  83. R. Hegger, H. Kantz, L. Matassini, T. Schreiber, Coping with non-stationarity by overembedding, Phys. Rev. Lett. 84, 4092 (2000) [CrossRef] [Google Scholar]
  84. C. Rieke, K. Sternickel, R.G. Andrzejak, C.E. Elger, P. David, K. Lehnertz, Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems, Phys. Rev. Lett. 88, 244102 (2002) [CrossRef] [Google Scholar]
  85. E.C.A. Hansen, D. Battaglia, A. Spiegler, G. Deco, V.K. Jirsa, Functional connectivity dynamics: Modeling the switching behavior of the resting state, NeuroImage 105, 525 (2015) [CrossRef] [Google Scholar]
  86. J.S. Barlow, Methods of analysis of nonstationary EEGs with emphasis on segmentation techniques: a comparative review, J. Clin. Neurophysiol. 2, 267 (1985) [CrossRef] [Google Scholar]
  87. S. Blanco, H. Garcia, R. Quian Quiroga, L. Romanelli, O.A. Rosso, Stationarity of the EEG series, IEEE Eng. Med. Biol. 4, 395 (1995) [CrossRef] [Google Scholar]
  88. T. Schreiber, Detecting and analysing nonstationarity in a time series using nonlinear cross predictions, Phys. Rev. Lett. 78, 843 (1997) [CrossRef] [Google Scholar]
  89. A. Witt, J. Kurths, A. Pikovsky, Testing stationarity in time series, Phys. Rev. E 58, 1800 (1998) [CrossRef] [Google Scholar]
  90. C. Rieke, R.G. Andrzejak, F. Mormann, K. Lehnertz, Improved statistical test for nonstationarity using recurrence time statistics, Phys. Rev. E 69, 046111 (2004) [CrossRef] [Google Scholar]
  91. T. Dikanev, D. Smirnov, R. Wennberg, J. Velazquez, B. Bezruchko, EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis, Clin. Neurophysiol. 116, 1796 (2005) [CrossRef] [Google Scholar]
  92. A.Y. Kaplan, A.A. Fingelkurts, A.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky, Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges, Signal Proc. 85, 2190 (2005) [CrossRef] [Google Scholar]
  93. S. Tong, Z. Li, Y. Zhu, N.V. Thakor, Describing the nonstationarity level of neurological signals based on quantifications of time-frequency representation, IEEE Trans. Biomed. Eng. 54, 1780 (2007) [CrossRef] [Google Scholar]
  94. S.J. Luck, An introduction to the event-related potential technique (MIT Press, Cambridge, MA, 2005) [Google Scholar]
  95. R.G. Andrzejak, A. Ledberg, G. Deco, Detecting event-related time-dependent directional couplings, New J. Phys. 8, 6 (2006) [CrossRef] [Google Scholar]
  96. S. Łeski, D.K. Wójcik, Inferring coupling strength from event-related dynamics, Phys. Rev. E 78, 41918 (2008) [CrossRef] [Google Scholar]
  97. M. Martini, T.A. Kranz, T. Wagner, K. Lehnertz, Inferring directional interactions from transient signals with symbolic transfer entropy, Phys. Rev. E 83, 011919 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  98. P. Wollstadt, M. Martinez-Zarzuela, R. Vicente, F.J. Diaz-Pernas, M. Wibral, Efficient transfer entropy analysis of non-stationary neural time series, PLOS ONE 9, 1 (2014) [Google Scholar]
  99. J.L. Rodgers, W.A. Nicewander, Thirteen ways to look at the correlation coefficient, Am. Stat. 42, 59 (1988) [CrossRef] [Google Scholar]
  100. C.W.J. Granger, Investigating causal relations by econometric models and cross–spectral methods, Econometrica 37, 424 (1969) [Google Scholar]
  101. M. Eichler, A graphical approach for evaluating effective connectivity in neural systems, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 360, 953 (2005) [CrossRef] [Google Scholar]
  102. T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000) [CrossRef] [PubMed] [Google Scholar]
  103. Z. Liu, Measuring the degree of synchronization from time series data, Europhys. Lett. 68, 19 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
  104. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators, Phys. Rev. E 64, 045202 (2001) [CrossRef] [Google Scholar]
  105. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D 144, 358 (2000) [CrossRef] [Google Scholar]
  106. J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D 134, 419 (1999) [CrossRef] [Google Scholar]
  107. R. Quian Quiroga, J. Arnhold, P. Grassberger, Learning driver-response relationships from synchronization patterns, Phys. Rev. E 61, 5142 (2000) [CrossRef] [Google Scholar]
  108. R.G. Andrzejak, D. Chicharro, K. Lehnertz, F. Mormann, Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates, Phys. Rev. E 83, 046203 (2011) [CrossRef] [Google Scholar]
  109. K.J. Friston, Functional and effective connectivity: a review, Brain Connect. 1, 13 (2011) [Google Scholar]
  110. O. David, D. Cosmelli, K.J. Friston, Evaluation of different measures of functional connectivity using a neural mass model, NeuroImage 21, 659 (2004) [CrossRef] [Google Scholar]
  111. T. Kreuz, F. Mormann, R.G. Andrzejak, A. Kraskov, K. Lehnertz, P. Grassberger, Measuring synchronization in coupled model systems: a comparison of different approaches, Physica D 225, 29 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  112. R. Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signals, Phys. Rev. E 65, 041903 (2002) [CrossRef] [Google Scholar]
  113. H. Osterhage, F. Mormann, M. Staniek, K. Lehnertz, Measuring synchronization in the epileptic brain: a comparison of different approaches, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3539 (2007) [CrossRef] [Google Scholar]
  114. H. Dickten, S. Porz, C.E. Elger, K. Lehnertz, Weighted and directed interactions in evolving large-scale epileptic brain networks, Sci. Rep. 6, 34824 (2016) [CrossRef] [Google Scholar]
  115. K. Lehnertz, H. Dickten, Assessing directionality and strength of coupling through symbolic analysis: an application to epilepsy patients, Philos. Trans. R. Soc. A 373, 20140094 (2015) [Google Scholar]
  116. M. Paluš, M. Vejmelka, Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections, Phys. Rev. E 75, 056211 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  117. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Measuring the directionality of coupling: phase versus state space dynamics and application to EEG time series, Int. J. Neural. Syst. 17, 139 (2007) [CrossRef] [PubMed] [Google Scholar]
  118. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls, Phys. Rev. E 77, 011914 (2008) [CrossRef] [Google Scholar]
  119. M. Staniek, K. Lehnertz, Symbolic transfer entropy, Phys. Rev. Lett. 100, 158101 (2008) [CrossRef] [PubMed] [Google Scholar]
  120. K.A. Blaha, A. Pikovsky, M. Rosenblum, M.T. Clark, C.G. Rusin, J.L. Hudson, Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators, Phys. Rev. E 84, 046201 (2011) [CrossRef] [Google Scholar]
  121. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise, Phys. Rev. Lett. 109, 024101 (2012) [CrossRef] [PubMed] [Google Scholar]
  122. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability, Nat. Commun. 4, 2418 (2013) [CrossRef] [PubMed] [Google Scholar]
  123. T. Stankovski, V. Ticcinelli, P.V.E. McClintock, A. Stefanovska, Coupling functions in networks of oscillators, New J. Phys. 17, 035002 (2015) [CrossRef] [Google Scholar]
  124. J. Wilting, K. Lehnertz, Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations, Eur. Phys. J. B 88, 193 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  125. M. Eichler, R. Dahlhaus, J. Sandkühler, Partial correlation analysis for the identification of synaptic connections, Biol. Cybern. 89, 289 (2003) [CrossRef] [Google Scholar]
  126. Y. Chen, G. Rangarajan, J. Feng, M. Ding, Analyzing multiple nonlinear time series with extended Granger causality, Phys. Lett. A 324, 26 (2004) [CrossRef] [Google Scholar]
  127. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Partial phase synchronization for multivariate synchronizing systems, Phys. Rev. Lett. 96, 208103 (2006) [CrossRef] [PubMed] [Google Scholar]
  128. B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C.H. Lücking, R. Dahlhaus, J. Timmer, Testing for directed influences among neural signals using partial directed coherence, J. Neurosci. Methods 152, 210 (2006) [CrossRef] [Google Scholar]
  129. S. Frenzel, B. Pompe, Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett. 99, 204101 (2007) [CrossRef] [Google Scholar]
  130. D.A. Smirnov, B.P. Bezruchko, Detection of couplings in ensembles of stochastic oscillators, Phys. Rev. E 79, 046204 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  131. V.A. Vakorin, O.A. Krakovska, A.R. McIntosh, Confounding effects of indirect connections on causality estimation, J. Neurosci. Methods 184, 152 (2009) [CrossRef] [PubMed] [Google Scholar]
  132. J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104, 038701 (2010) [CrossRef] [PubMed] [Google Scholar]
  133. M. Jalili, M.G. Knyazeva, Constructing brain functional networks from EEG: partial and unpartial correlations, J. Integr. Neurosci. 10, 213 (2011) [CrossRef] [Google Scholar]
  134. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect coupling by means of recurrences, Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 1099 (2011) [CrossRef] [Google Scholar]
  135. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Escaping the curse of dimensionality in estimating multivariate transfer entropy, Phys. Rev. Lett. 108, 258701 (2012) [CrossRef] [Google Scholar]
  136. S. Stramaglia, G.-R. Wu, M. Pellicoro, D. Marinazzo, Expanding the transfer entropy to identify information circuits in complex systems, Phys. Rev. E 86, 066211 (2012) [CrossRef] [Google Scholar]
  137. D. Kugiumtzis, Partial transfer entropy on rank vectors, Eur. Phys. J. Special Topics 222, 401 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  138. L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi, H. Witte, Time-variant partial directed coherence for analysing connectivity: a methodological study, Philos. Trans. R. Soc. A 371, 20110616 (2013) [Google Scholar]
  139. R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller, C. Grebogi, C. Schwarzbauer, J. Timmer, B. Schelter, The impact of latent confounders in directed network analysis in neuroscience, Philos. Trans. R. Soc. A 371, 20110612 (2013) [CrossRef] [Google Scholar]
  140. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys. 16, 085013 (2014) [CrossRef] [Google Scholar]
  141. H. Elsegai, H. Shiells, M. Thiel, B. Schelter, Network inference in the presence of latent confounders: the role of instantaneous causalities, J. Neurosci. Methods 245, 91 (2015) [CrossRef] [Google Scholar]
  142. L. Faes, D. Kugiumtzis, G. Nollo, F. Jurysta, D. Marinazzo, Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E 91, 032904 (2015) [CrossRef] [Google Scholar]
  143. W. Mader, M. Mader, J. Timmer, M. Thiel, B. Schelter, Networks: On the relation of bi-and multivariate measures, Sci. Rep. 5, 10805 (2015) [CrossRef] [Google Scholar]
  144. J. Zhao, Y. Zhou, X. Zhang, L. Chen, Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA 113, 5130 (2016) [CrossRef] [Google Scholar]
  145. Z. Albo, G.V. Di Prisco, Y. Chen, G. Rangarajan, W. Truccolo, J. Feng, R.P. Vertes, M. Ding, Is partial coherence a viable technique for identifying generators of neural oscillations? Biol. Cybern. 90, 318 (2004) [CrossRef] [Google Scholar]
  146. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Identifying true brain interaction from EEG data using the imaginary part of coherency, Clin. Neurophysiol. 115, 2292 (2004) [Google Scholar]
  147. T. Zerenner, P. Friederichs, K. Lehnertz, A. Hense, A Gaussian graphical model approach to climate networks, Chaos 24, 023103 (2014) [CrossRef] [Google Scholar]
  148. N. Rubido, A.C. Marti, E. Bianco-Martinez, C. Grebogi, M.S. Baptista, C. Masoller, Exact detection of direct links in networks of interacting dynamical units, New J. Phys. 16, 093010 (2014) [CrossRef] [Google Scholar]
  149. T. Rings, K. Lehnertz, Distinguishing between direct and indirect directional couplings in large oscillator networks: partial or non-partial phase analyses? Chaos 26, 093106 (2016) [CrossRef] [Google Scholar]
  150. R. Guimerà, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks, Proc. Natl. Acad. Sci. USA 106, 22073 (2009) [CrossRef] [Google Scholar]
  151. B. Barzel, A.-L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31, 720 (2013) [CrossRef] [PubMed] [Google Scholar]
  152. V. Pernice, S. Rotter, Reconstruction of sparse connectivity in neural networks from spike train covariances, J. Stat. Mech. Theor. Exp. 2013, 03008 (2013) [CrossRef] [Google Scholar]
  153. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Reconstructing propagation networks with natural diversity and identifying hidden sources, Nat. Commun. 5, 4323 (2014) [Google Scholar]
  154. J. Runge, Quantifying information transfer and mediation along causal pathways in complex systems, Phys. Rev. E 92, 062829 (2015) [CrossRef] [Google Scholar]
  155. Y.V. Zaytsev, A. Morrison, M. Deger, Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity, J. Comput. Neurosci. 39, 77 (2015) [CrossRef] [Google Scholar]
  156. L. Pan, T. Zhou, L. Lü, C.-K. Hu, Predicting missing links and identifying spurious links via likelihood analysis, Sci. Rep. 6, 22955 (2016) [CrossRef] [Google Scholar]
  157. C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources, Hum. Brain Mapp. 28, 1178 (2007) [CrossRef] [PubMed] [Google Scholar]
  158. M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, C.M.A. Pennartz, An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias, NeuroImage 55, 1548 (2011) [CrossRef] [Google Scholar]
  159. C.J. Stam, E.C.W. van Straaten, Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics, NeuroImage 62, 1415 (2012) [CrossRef] [Google Scholar]
  160. M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C.J. Stam, P. Fuhr, Reproducibility of functional connectivity and graph measures based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) derived from high resolution EEG, PLOS ONE 9, 108648 (2014) [CrossRef] [Google Scholar]
  161. D. Yu, S. Boccaletti, Real-time estimation of interaction delays, Phys. Rev. E 80, 036203 (2009) [CrossRef] [Google Scholar]
  162. L.R. Peraza, A.U.R. Asghar, G. Green, D.M. Halliday, Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index, J. Neurosci. Methods 207, 189 (2012) [CrossRef] [Google Scholar]
  163. S.M. Gordon, P.J. Franaszczuk, W.D. Hairston, M. Vindiola, K. McDowell, Comparing parametric and nonparametric methods for detecting phase synchronization in EEG, J. Neurosci. Methods 212, 247 (2013) [CrossRef] [Google Scholar]
  164. S. Porz, M. Kiel, K. Lehnertz, Can spurious indications for phase synchronization due to superimposed signals be avoided? Chaos 24, 033112 (2014) [CrossRef] [PubMed] [Google Scholar]
  165. G.L. Colclough, M.W. Woolrich, P.K. Tewarie, M.J. Brookes, A.J. Quinn, S.M. Smith, How reliable are MEG resting-state connectivity metrics? NeuroImage 138, 284 (2016) [CrossRef] [Google Scholar]
  166. L. Cimponeriu, M. Rosenblum, A. Pikovsky, Estimation of delay in coupling from time series, Phys. Rev. E 70, 046213 (2004) [CrossRef] [Google Scholar]
  167. N. Wessel, A. Suhrbier, M. Riedl, N. Marwan, H. Malberg, G. Bretthauer, T. Penzel, J. Kurths, Detection of time-delayed interactions in biosignals using symbolic coupling traces, Europhys. Lett. 87, 10004 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  168. A.N. Silchenko, I. Adamchic, N. Pawelczyk, C. Hauptmann, M. Maarouf, V. Sturm, P.A. Tass, Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems, J. Neurosci. Methods 191, 32 (2010) [CrossRef] [Google Scholar]
  169. H. Dickten, K. Lehnertz, Identifying delayed directional couplings with symbolic transfer entropy, Phys. Rev. E 90, 062706 (2014) [CrossRef] [Google Scholar]
  170. H. Ye, E.R. Deyle, L.J. Gilarranz, G. Sugihara, Distinguishing time-delayed causal interactions using convergent cross mapping, Sci. Rep. 5, 14750 (2015) [CrossRef] [Google Scholar]
  171. R.G. Andrzejak, T. Kreuz, Characterizing unidirectional couplings between point processes and flows, Europhys. Lett. 96, 50012 (2011) [CrossRef] [EDP Sciences] [Google Scholar]
  172. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10, 186 (2009) [CrossRef] [PubMed] [Google Scholar]
  173. K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, S. Porz, Evolving networks in the human epileptic brain, Physica D 267, 7 (2014) [CrossRef] [Google Scholar]
  174. D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, J.M. Buldú, Functional brain networks: great expectations, hard times and the big leap forward, Philos. Trans. R. Soc. B 369, 20130525 (2014) [CrossRef] [Google Scholar]
  175. S. Bialonski, M.-T. Horstmann, K. Lehnertz, From brain to earth and climate systems: Small-world interaction networks or not? Chaos 20, 013134 (2010) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  176. B.C.M. van Wijk, C.J. Stam, A. Daffertshofer, Comparing brain networks of different size and connectivity density using graph theory, PLOS ONE 5, 13701 (2010) [CrossRef] [PubMed] [Google Scholar]
  177. J. Hlinka, D. Hartman, M. Paluš, Small-world topology of functional connectivity in randomly connected dynamical systems, Chaos 22, 033107 (2012) [CrossRef] [Google Scholar]
  178. A. Joudaki, N. Salehi, M. Jalili, M.G. Knyazeva, EEG-based functional brain networks: does the network size matter? PLOS ONE 7, 35673 (2012) [CrossRef] [Google Scholar]
  179. A. Fornito, A. Zalesky, M. Breakspear, Graph analysis of the human connectome: promise, progress, and pitfalls, NeuroImage 80, 426 (2013) [CrossRef] [Google Scholar]
  180. M.L. Stanley, M.N. Moussa, B. Paolini, R.G. Lyday, J.H. Burdette, P.J. Laurienti, Defining nodes in complex brain networks, Front. Comput. Neurosci. 7, 169 (2013) [CrossRef] [Google Scholar]
  181. V. Wens, Investigating complex networks with inverse models: analytical aspects of spatial leakage and connectivity estimation, Phys. Rev. E 91, 012823 (2015) [CrossRef] [Google Scholar]
  182. D. Papo, M. Zanin, J.H. Martínez, J.M. Buldú, Beware of the small-world neuroscientist! Front. Hum. Neurosci. 10, 96 (2016) [Google Scholar]
  183. B.S. Anderson, C. Butts, K. Carley, The interaction of size and density with graph-level indices, Soc. Netw. 21, 239 (1999) [CrossRef] [Google Scholar]
  184. A.A. Ioannides, Dynamic functional connectivity, Curr. Opin. Neurobiol. 17, 161 (2007) [CrossRef] [Google Scholar]
  185. M.A. Kramer, U.T. Eden, S.S. Cash, E.D. Kolaczyk, Network inference with confidence from multivariate time series, Phys. Rev. E 79, 061916 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  186. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage 52, 1059 (2010) [Google Scholar]
  187. M. Zanin, P. Sousa, D. Papo, R. Bajo, J. Garcia-Prieto, F. del Pozo, E. Menasalvas, S. Boccaletti, Optimizing functional network representation of multivariate time series, Sci. Rep. 2, 630 (2012) [CrossRef] [PubMed] [Google Scholar]
  188. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58, 765 (1986) [CrossRef] [Google Scholar]
  189. U. Lee, S. Kim, K.-Y. Jung, Classification of epilepsy types through global network analysis of scalp electroencephalograms, Phys. Rev. E 73, 041920 (2006) [CrossRef] [Google Scholar]
  190. C.J. Ortega, R.G. Sola, J. Pastor, Complex network analysis of human ECoG data, Neurosci. Lett. 447, 129 (2008) [CrossRef] [Google Scholar]
  191. C. Stam, P. Tewarie, E. Van Dellen, E. Van Straaten, A. Hillebrand, P. Van Mieghem, The trees and the forest: characterization of complex brain networks with minimum spanning trees, Int. J. Psychophysiol. 92, 129 (2014) [CrossRef] [Google Scholar]
  192. G. Ansmann, K. Lehnertz, Surrogate-assisted analysis of weighted functional brain networks, J. Neurosci. Methods 208, 165 (2012) [CrossRef] [Google Scholar]
  193. P. Macdonald, E. Almaas, A.-L. Barabási, Minimum spanning trees of weighted scale-free networks, Europhys. Lett. 72, 308 (2005) [CrossRef] [EDP Sciences] [Google Scholar]
  194. F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, A. Tocci, S. Salinari, M. Marciani, H. Witte, A. Colosimo, F. Babiloni, Brain network analysis from high-resolution EEG recordings by the application of theoretical graph indexes, IEEE Trans. Neural Syst. Rehab. Eng. 16, 442 (2008) [CrossRef] [Google Scholar]
  195. W.J. Marshall, C.L. Lackner, P. Marriott, D.L. Santesso, S.J. Segalowitz, Using phase shift Granger causality to measure directed connectivity in EEG recordings, Brain Connect. 4, 826 (2014) [CrossRef] [Google Scholar]
  196. M.H.I. Shovon, N. Nandagopal, R. Vijayalakshmi, J.T. Du, B. Cocks, Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy, Neural Process. Lett. 45, 807 (2016) [CrossRef] [Google Scholar]
  197. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep. 424, 175 (2006) [Google Scholar]
  198. S. Fortunato, Community detection in graphs, Phys. Rep. 486, 75 (2010) [Google Scholar]
  199. M. Barthélemy, Spatial networks, Phys. Rep. 499, 1 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  200. M.E.J. Newman, Communities, modules and large-scale structure in networks, Nat. Phys. 8, 25 (2012) [CrossRef] [Google Scholar]
  201. S. Bialonski, M. Wendler, K. Lehnertz, Unraveling spurious properties of interaction networks with tailored random networks, PLOS ONE 6, 22826 (2011) [CrossRef] [Google Scholar]
  202. J. Saramäki, M. Kivelä, J.P. Onnela, K. Kaski, J. Kertész, Generalizations of the clustering coefficient to weighted complex networks, Phys. Rev. E 75, 027105 (2007) [CrossRef] [Google Scholar]
  203. D.S. Bassett, E. Bullmore, Small-world brain networks, Neuroscientist 12, 512 (2006) [CrossRef] [PubMed] [Google Scholar]
  204. J.C. Reijneveld, S.C. Ponten, H.W. Berendse, C.J. Stam, The application of graph theoretical analysis to complex networks in the brain, Clin. Neurophysiol. 118, 2317 (2007) [CrossRef] [Google Scholar]
  205. C.J. Stam, Modern network science of neurological disorders, Nat. Rev. Neurosci. 15, 683 (2014) [CrossRef] [Google Scholar]
  206. C.C. Hilgetag, A. Goulas, Is the brain really a small-world network? Brain Struct. Funct. 221, 2361 (2016) [CrossRef] [Google Scholar]
  207. M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) [CrossRef] [PubMed] [Google Scholar]
  208. S. Bialonski, K. Lehnertz, Assortative mixing in functional brain networks during epileptic seizures, Chaos 23, 033139 (2013) [CrossRef] [PubMed] [Google Scholar]
  209. F.M. Atay, T. Bıyıkoğlu, J. Jost, Network synchronization: Spectral versus statistical properties, Physica D 224, 35 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  210. F. Comellas, S. Gago, Synchronizability of complex networks, J. Phys. A 40, 4483 (2007) [CrossRef] [Google Scholar]
  211. D. Koschützki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, Centrality indices, in Network analysis. Lecture Notes in Computer Science, edited by U. Brandes, T. Erlebach (Springer, Berlin, Heidelberg, 2005), Vol. 3418, p. 16 [CrossRef] [Google Scholar]
  212. M.-T. Kuhnert, C. Geier, C.E. Elger, K. Lehnertz, Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches, Chaos 22, 023142 (2012) [CrossRef] [Google Scholar]
  213. B. Efron, Large-scale simultaneous hypothesis testing: the choice of a null hypothesis, JASA 99, 465 (2004) [Google Scholar]
  214. B. Efron, The jackknife, the bootstrap and other resampling plans (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1982) [Google Scholar]
  215. R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, T. Kreuz, Bivariate surrogate techniques: necessity, strengths, and caveats, Phys. Rev. E 68, 066202 (2003) [CrossRef] [Google Scholar]
  216. M. Small, D. Yu, R.G. Harrison, Surrogate test for pseudoperiodic time series data, Phys. Rev. Lett. 87, 188101 (2001) [CrossRef] [Google Scholar]
  217. K.T. Dolan, A. Neiman, Surrogate analysis of coherent multichannel data, Phys. Rev. E 65, 026108 (2002) [CrossRef] [Google Scholar]
  218. L. Faes, G.D. Pinna, A. Porta, R. Maestri, G. Nollo, Surrogate data analysis for assessing the significance of the coherence function, IEEE Trans. Biomed. Eng. 51, 1156 (2004) [CrossRef] [Google Scholar]
  219. M. Breakspear, M. Brammer, P.A. Robinson, Construction of multivariate surrogate sets from nonlinear data using the wavelet transform, Physica D 182, 1 (2003) [CrossRef] [Google Scholar]
  220. C.J. Keylock, A wavelet-based method for surrogate data generation, Physica D 225, 219 (2007) [CrossRef] [Google Scholar]
  221. M. Paluš, Bootstrapping multifractals: Surrogate data from random cascades on wavelet dyadic trees, Phys. Rev. Lett. 101, 134101 (2008) [CrossRef] [Google Scholar]
  222. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchronization: twin surrogates revisited, Chaos 19, 015108 (2009) [CrossRef] [Google Scholar]
  223. T. Nakamura, M. Small, Y. Hirata, Testing for nonlinearity in irregular fluctuations with long-term trends, Phys. Rev. E 74, 026205 (2006) [CrossRef] [Google Scholar]
  224. T. Nakamura, T. Tanizawa, M. Small, Constructing networks from a dynamical system perspective for multivariate nonlinear time series, Phys. Rev. E 93, 032323 (2016) [CrossRef] [Google Scholar]
  225. T. Suzuki, T. Ikeguchi, M. Suzuki, Effects of data windows on the methods of surrogate data, Phys. Rev. E 71, 056708 (2005) [CrossRef] [Google Scholar]
  226. J. Lucio, R. Valdés, L. Rodríguez, Improvements to surrogate data methods for nonstationary time series, Phys. Rev. E 85, 056202 (2012) [CrossRef] [Google Scholar]
  227. A.M. Bronstein, M.M. Bronstein, R. Kimmel, Efficient computation of isometry-invariant distances between surfaces, SIAM J. Sci. Comput. 28, 1812 (2006) [CrossRef] [Google Scholar]
  228. M. Muskulus, S. Houweling, S. Verduyn-Lunel, A. Daffertshofer, Functional similarities and distance properties, J. Neurosci. Methods 183, 31 (2009) [CrossRef] [Google Scholar]
  229. F. Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11, 417 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  230. H. Lee, M.K. Chung, H. Kang, B.-N. Kim, D.S. Lee, Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2011), pp. 302–309 [Google Scholar]
  231. D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Robust detection of dynamic community structure in networks, Chaos 23, 013142 (2013) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  232. Y. Hulovatyy, H. Chen, T. Milenković, Exploring the structure and function of temporal networks with dynamic graphlets, Bioinformatics 31, 171 (2015) [CrossRef] [PubMed] [Google Scholar]
  233. N. Dianati, Unwinding the hairball graph: pruning algorithms for weighted complex networks, Phys. Rev. E 93, 012304 (2016) [CrossRef] [Google Scholar]
  234. M.J. Cook, T.J. O'Brien, S.F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D'Souza, R. Yerra, J. Archer, L. Litewka, S. Hosking, P. Lightfoot, V. Ruedebusch, W.D. Sheffield, D. Snyder, K. Leyde, D. Himes, Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study, Lancet Neurol. 12, 563 (2013) [CrossRef] [Google Scholar]
  235. F. Mormann, R. Andrzejak, C.E. Elger, K. Lehnertz, Seizure prediction: the long and winding road, Brain 130, 314 (2007) [CrossRef] [PubMed] [Google Scholar]
  236. S. Ramgopal, S. Thome-Souza, M. Jackson, N.E. Kadish, I.S. Fernández, J. Klehm, W. Bosl, C. Reinsberger, S. Schachter, T. Loddenkemper, Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behav. 37, 291 (2014) [CrossRef] [Google Scholar]
  237. K. Gadhoumi, J.-M. Lina, F. Mormann, J. Gotman, Seizure prediction for therapeutic devices: a review, J. Neurosci. Methods 260, 270 (2016) [CrossRef] [Google Scholar]
  238. K. Lehnertz, H. Dickten, S. Porz, C. Helmstaedter, C.E. Elger, Predictability of uncontrollable multifocal seizures – towards new treatment options, Sci. Rep. 6, 24584 (2016) [CrossRef] [Google Scholar]
  239. R.S. Fisher, Therapeutic devices for epilepsy, Ann. Neurol. 71, 157 (2012) [CrossRef] [Google Scholar]
  240. B.H. Brinkmann, J. Wagenaar, D. Abbot, P. Adkins, S.C. Bosshard, M. Chen, Q.M. Tieng, J. He, F.J. Muñoz-Almaraz, P. Botella-Rocamora, J. Pardo, F. Zamora-Martinez, M. Hills, W. Wu, I. Korshunova, W. Cukierski, C. Vite, E.E. Patterson, B. Litt, G.A. Worrell, Crowdsourcing reproducible seizure forecasting in human and canine epilepsy, Brain 139, 1713 (2016) [CrossRef] [Google Scholar]
  241. H. Feldwisch-Drentrup, M. Staniek, A. Schulze-Bonhage, J. Timmer, H. Dickten, C.E. Elger, B. Schelter, K. Lehnertz, Identification of preseizure states in epilepsy: a data-driven approach for multichannel EEG recordings, Front. Comput. Neurosci. 5, 32 (2011) [CrossRef] [Google Scholar]
  242. M.J. Cook, A. Varsavsky, D. Himes, K. Leyde, S.F. Berkovic, T. O’Brien, I. Mareels, Long memory processes are revealed in the dynamics of the epileptic brain, Front. Neurol. 5, 217 (2014) [Google Scholar]
  243. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data, SIAM Rev. 51, 661 (2009) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  244. E. Taubøll, A. Lundervold, L. Gjerstada, Temporal distribution of seizures in epilepsy, Epilepsy Res. 8, 153 (1991) [CrossRef] [Google Scholar]
  245. P. Suffczynski, S. Kalitzin, F.H.L. da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience 126, 467 (2004) [CrossRef] [Google Scholar]
  246. C. Meisel, A. Schulze-Bonhage, D. Freestone, M.J. Cook, P. Achermann, D. Plenz, Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle, Proc. Natl. Acad. Sci. USA 112, 14694 (2015) [CrossRef] [Google Scholar]
  247. T. Kreuz, R.G. Andrzejak, F. Mormann, A. Kraskov, H. Stögbauer, C.E. Elger, K. Lehnertz, P. Grassberger, Measure profile surrogates: a method to validate the performance of epileptic seizure prediction algorithms, Phys. Rev. E 69, 061915 (2004) [CrossRef] [Google Scholar]
  248. M.A. Kramer, S.S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18, 360 (2012) [CrossRef] [Google Scholar]
  249. M.P. Richardson, Large scale brain models of epilepsy: dynamics meets connectomics, J. Neurol. Neurosurg. Psychiatry 83, 1238 (2012) [CrossRef] [PubMed] [Google Scholar]
  250. K. Schindler, H. Leung, C.E. Elger, K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain 130, 65 (2007) [Google Scholar]
  251. K. Schindler, C.E. Elger, K. Lehnertz, Increasing synchronization may promote seizure termination: Evidence from status epilepticus, Clin. Neurophysiol. 118, 1955 (2007) [CrossRef] [PubMed] [Google Scholar]
  252. K. Schindler, S. Bialonski, M.-T. Horstmann, C.E. Elger, K. Lehnertz, Evolving functional network properties and synchronizability during human epileptic seizures, Chaos 18, 033119 (2008) [CrossRef] [PubMed] [Google Scholar]
  253. M.A. Kramer, E.D. Kolaczyk, H.E. Kirsch, Emergent network topology at seizure onset in humans, Epilepsy Res. 79, 173 (2008) [CrossRef] [PubMed] [Google Scholar]
  254. S.C. Ponten, L. Douw, F. Bartolomei, J.C. Reijneveld, C.J. Stam, Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analysis, Exp. Neurol. 217, 197 (2009) [CrossRef] [PubMed] [Google Scholar]
  255. M.A. Kramer, W. Truccolo, U.T. Eden, K.Q. Lepage, L.R. Hochberg, E.N. Eskandar, J.R. Madsen, J.W. Lee, A. Maheshwari, E. Halgren, C.J. Chu, S.S. Cash, Human seizures self-terminate across spatial scales via a critical transition, Proc. Natl. Acad. Sci. USA 109, 21116 (2012) [CrossRef] [Google Scholar]
  256. S.P. Burns, S. Santaniello, R.B. Yaffe, C.C. Jouny, N.E. Crone, G.K. Bergey, W.S. Anderson, S.V. Sarma, Network dynamics of the brain and influence of the epileptic seizure onset zone, Proc. Natl. Acad. Sci. USA 111, 5321 (2014) [CrossRef] [Google Scholar]
  257. C. Geier, S. Bialonski, C.E. Elger, K. Lehnertz, How important is the seizure onset zone for seizure dynamics? Seizure 25, 160 (2015) [CrossRef] [PubMed] [Google Scholar]
  258. A.N. Khambhati, K.A. Davis, B.S. Oommen, S.H. Chen, T.H. Lucas, B. Litt, D.S. Bassett, Dynamic network drivers of seizure generation, propagation and termination in human neocortical epilepsy, PLoS Comput. Biol. 11, 1 (2015) [CrossRef] [Google Scholar]
  259. F. Zubler, H. Gast, E. Abela, C. Rummel, M. Hauf, R. Wiest, C. Pollo, K. Schindler, Detecting functional hubs of ictogenic networks, Brain Topogr. 28, 305 (2015) [CrossRef] [Google Scholar]
  260. M. Goodfellow, C. Rummel, E. Abela, M.P. Richardson, K. Schindler, J.R. Terry, Estimation of brain network ictogenicity predicts outcome from epilepsy surgery, Sci. Rep. 6, 29215 (2016) [CrossRef] [Google Scholar]
  261. M.-T. Horstmann, S. Bialonski, N. Noennig, H. Mai, J. Prusseit, J. Wellmer, H. Hinrichs, K. Lehnertz, State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG, Clin. Neurophysiol. 121, 172 (2010) [CrossRef] [Google Scholar]
  262. M.-T. Kuhnert, S. Bialonski, N. Noennig, H. Mai, H. Hinrichs, C. Helmstaedter, K. Lehnertz, Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks, PLOS ONE 8, 80273 (2013) [CrossRef] [Google Scholar]
  263. E. van Diessen, W.J.E.M. Zweiphenning, F.E. Jansen, C.J. Stam, K.P.J. Braun, W.M. Otte, Brain network organization in focal epilepsy: a systematic review and meta-analysis, PLOS ONE 9, 114606 (2014) [CrossRef] [Google Scholar]
  264. M.-T. Kuhnert, C.E. Elger, K. Lehnertz, Long-term variability of global statistical properties of epileptic brain networks, Chaos 20, 043126 (2010) [CrossRef] [Google Scholar]
  265. C. Geier, K. Lehnertz, S. Bialonski, Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing, Front. Hum. Neurosci. 9, 462 (2015) [CrossRef] [Google Scholar]
  266. M.A. Kramer, U.T. Eden, K.Q. Lepage, E.D. Kolaczyk, M.T. Bianchi, S.S. Cash, Emergence of persistent networks in long-term intracranial EEG recordings, J. Neurosci. 31, 15757 (2011) [CrossRef] [Google Scholar]
  267. C. Geier, K. Lehnertz, Long-term variability of importance of brain regions in evolving epileptic brain networks, Chaos 27, 043112 (2017) [CrossRef] [Google Scholar]