Open Access
EPJ Nonlinear Biomed. Phys.
Volume 5, 2017
Article Number 2
Number of page(s) 16
Section Physics of Biological Systems and Their Interactions
Published online 30 June 2017
  1. V. Braitenberg, A. Schütz, Anatomy of the cortex – statistics and geometry (Springer, Berlin, 1991) [CrossRef]
  2. J.M.J. Murre, D.P.F. Sturdy, The connectivity of the brain: multi-level quantitative analysis, Biol. Cybern. 73, 529 (1995) [CrossRef]
  3. A. Volterra, J. Meldolesi, Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci. 6, 626 (2005) [CrossRef] [PubMed]
  4. V.B. Mountcastle, The columnar organization of the neocortex, Brain 120, 701 (1997) [CrossRef]
  5. B. Hutcheon, Y. Yarom, Resonance, oscillation and the intrinsic frequency preferences of neurons, Trends Neurosci. 23, 216 (2000) [CrossRef] [PubMed]
  6. A.K. Engel, P. Fries, W. Singer, Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2, 704 (2001) [CrossRef] [PubMed]
  7. E. Salinas, T.J. Sejnowski, Correlated neuronal activity and the flow of neural information, Nat. Rev. Neurosci. 2, 539 (2001) [CrossRef] [PubMed]
  8. F.J. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brain web: Phase synchronization and large-scale integration, Nat. Rev. Neurosci. 2, 229 (2001) [CrossRef] [PubMed]
  9. S. Makeig, S. Debener, J. Onton, A. Delorme, Mining event-related brain dynamics, Trends Cogn. Sci. 8, 204 (2004) [CrossRef]
  10. S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci. 14, 277 (2010) [CrossRef]
  11. J. Fell, N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12, 105 (2011) [CrossRef] [PubMed]
  12. G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci. 13, 407 (2012) [CrossRef] [PubMed]
  13. W. Freeman, Neurodynamics: an exploration in mesoscopic brain dynamics (Springer, London, UK, 2012)
  14. M.I. Rabinovich, K.J. Friston, P. Varona, eds., Principles of brain dynamics: global state interactions (MIT Press, Cambridge, MA, 2012)
  15. M. Siegel, T.H. Donner, A.K. Engel, Spectral fingerprints of large-scale neuronal interactions, Nat. Rev. Neurosci. 13, 121 (2012)
  16. A.K. Engel, C. Gerloff, C.C. Hilgetag, G. Nolte, Intrinsic coupling modes: multiscale interactions in ongoing brain activity, Neuron 80, 867 (2013) [CrossRef]
  17. H.S. Lee, A. Ghetti, A. Pinto-Duarte, X. Wang, G. Dziewczapolski, F. Galimi, S. Huitron-Resendiz, J.C. Pina-Crespo, A.J. Roberts, I.M. Verma, T.J. Sejnowski, S.F. Heinemann, Astrocytes contribute to gamma oscillations and recognition memory, Proc. Natl. Acad. Sci. USA 111, 3343 (2014) [CrossRef]
  18. A. Schnitzler, J. Gross, Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci. 6, 285 (2005) [CrossRef] [PubMed]
  19. P.J. Uhlhaas, W. Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron 52, 155 (2006) [CrossRef] [PubMed]
  20. N.D. Schiff, T. Nauvel, J.D. Victor, Large-scale brain dynamics in disorders of consciousness, Curr. Opin. Neurobiol. 25, 7 (2014) [CrossRef]
  21. E. Niedermeyer, F. Lopes da Silva, Electroencephalography: basic principles, clinical applications, and related fields (Lippincott Williams and Williams, Philadelphia, 2005)
  22. M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys. 65, 413 (1993) [CrossRef]
  23. S.A. Huettel, A.W. Song, G. McCarthy, Functional magnetic resonance imaging, 3rd edn (Sinauer Associates Sunderland, Sunderland, MA, USA, 2004)
  24. F. Rosenow, H. Lüders, Presurgical evaluation of epilepsy, Brain 124, 1683 (2001) [CrossRef] [PubMed]
  25. A.K. Engel, C.K.E. Moll, I. Fried, G.A. Ojemann, Invasive recordings from the human brain: clinical insights and beyond, Nat. Rev. Neurosci. 6, 35 (2005) [CrossRef] [PubMed]
  26. S.S. Cash, L.R. Hochberg, The emergence of single neurons in clinical neurology, Neuron 86, 79 (2015) [CrossRef]
  27. E.F. Chang, Towards large-scale, human-based, mesoscopic neurotechnologies, Neuron 86, 68 (2015) [CrossRef]
  28. J. Niediek, J. Boström, C.E. Elger, F. Mormann, Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours, PLOS ONE 11, 0166598 (2016) [CrossRef]
  29. S. Panzeri, J.H. Macke, J. Gross, C. Kayser, Neural population coding: combining insights from microscopic and mass signals, Trends Cogn. Sci. 19, 162 (2015) [CrossRef]
  30. S. Marom, Neural timescales or lack thereof, Prog. Neurobiol. 90, 16 (2010) [CrossRef] [PubMed]
  31. T. Gisiger, Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol. Rev. 76, 161 (2001) [CrossRef]
  32. C. Bédard, H. Kröger, A. Destexhe, Does the 1∕f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97, 118102 (2006) [CrossRef] [PubMed]
  33. G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol. 1, 15 (2010)
  34. B.J. He, Scale-free brain activity: past, present, and future, Trends Cogn. Sci. 18, 480 (2014) [CrossRef]
  35. C. Meisel, C. Kuehn, Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures, PLOS ONE 7, 30371 (2012) [CrossRef]
  36. P.L. Nunez, R. Srinivasan, Electric fields of the brain: the neurophysics of EEG (Oxford University Press, Oxford, UK, 2006), 2nd edn [CrossRef]
  37. K. Lehnertz, J. Arnhold, P. Grassberger, C.E. Elger, Chaos in brain? (World Scientific, Singapore, 2000) [CrossRef]
  38. M. Breakspear, Dynamic models of large-scale brain activity, Nat. Neurosci. 20, 340 (2017) [CrossRef]
  39. T. Schreiber, A. Schmitz, Surrogate time series, Physica D 142, 346 (2000) [NASA ADS] [CrossRef] [MathSciNet]
  40. M. Paluš, From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics, Contemp. Phys. 48, 307 (2007) [CrossRef]
  41. M.J. Van der Heyden, C. Diks, J.P.M. Pijn, D.N. Velis, Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy, Phys. Lett. A 216, 283 (1996) [CrossRef]
  42. M.C. Casdagli, L.D. Iasemidis, R.S. Savit, R.L. Gilmore, S. Roper, J.C. Sackellares, Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy, Electroencephalogr. Clin. Neurophysiol. 102, 98 (1997) [CrossRef]
  43. J.P. Pijn, D.N. Velis, M.J. van der Heyden, J. DeGoede, C.W.M. van Veelen, Lopes da Silva, F.H.: Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings, Brain Topogr. 9, 249 (1997) [CrossRef]
  44. M. Feucht, U. Möller, H. Witte, K. Schmidt, M. Arnold, F. Benninger, K. Steinberger, M.H. Friedrich, Nonlinear dynamics of 3 Hz spike-and-wave discharges recorded during typical absence seizures in children, Cereb. Cortex 8, 524 (1998) [CrossRef]
  45. J.L. Perez Velazquez, H. Khosravani, A. Lozano, B.L. Bardakijan, P.L. Carlen, R. Wennberg, Type III intermittency in human partial epilepsy, Eur. J. Neurosci. 11, 2571 (1999) [CrossRef]
  46. R.G. Andrzejak, G. Widman, K. Lehnertz, P. David, C.E. Elger, The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy, Epilepsy Res. 44, 129 (2001) [CrossRef]
  47. R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E 64, 061907 (2001) [CrossRef]
  48. T. Gautama, D.P. Mandic, M.M. Van Hulle, Indications of nonlinear structures in brain electrical activity, Phys. Rev. E 67, 046204 (2003) [CrossRef]
  49. C. Rieke, F. Mormann, R.G. Andrzejak, T. Kreuz, P. David, C.E. Elger, K. Lehnertz, Discerning nonstationarity from nonlinearity in seizure-free and preseizure EEG recordings from epilepsy patients, IEEE Trans. Biomed. Eng. 50, 634 (2003) [CrossRef]
  50. R.G. Andrzejak, F. Mormann, G. Widmann, T. Kreuz, C.E. Elger, K. Lehnertz, Improved spatial characterization of the epileptic brain by focusing on nonlinearity, Epilepsy Res. 69, 30 (2006) [CrossRef]
  51. R.G. Andrzejak, K. Schindler, C. Rummel, Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients, Phys. Rev. E 86, 046206 (2012) [CrossRef]
  52. J.F. Donges, R.V. Donner, J. Kurths, Testing time series irreversibility using complex network methods, Europhys. Lett. 102, 10004 (2013) [CrossRef] [EDP Sciences]
  53. M. Anvari, M.R.R. Tabar, J. Peinke, K. Lehnertz, Disentangling the stochastic behavior of complex time series, Sci. Rep. 6, 35435 (2016) [CrossRef]
  54. K. Schindler, C. Rummel, R.G. Andrzejak, M. Goodfellow, F. Zubler, E. Abela, R. Wiest, C. Pollo, A. Steimer, H. Gast, Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone, Clin. Neurophysiol. 127, 3051 (2016) [CrossRef]
  55. M. Rizzi, I. Weissberg, D.Z. Milikovsky, A. Friedman, Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis, Sci. Rep. 6, 35510 (2016) [CrossRef]
  56. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, UK, 2001) [CrossRef]
  57. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366, 1 (2002) [CrossRef] [MathSciNet]
  58. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep. 469, 93 (2008) [CrossRef] [MathSciNet]
  59. Y. Tang, F. Qian, H. Gao, J. Kurths, Synchronization in complex networks and its application – a survey of recent advances and challenges, Annu. Rev. Control 38, 184 (2014) [CrossRef]
  60. G.E.P. Box, G.M. Jenkins, Time series analysis: forecasting and control, revised ed (Holden-Day, San Francisco, 1993)
  61. D. Brillinger, Time series: data analysis and theory (Holden-Day, San Francisco, USA, 1981)
  62. M.B. Priestley, Nonlinear and non-stationary time series analysis (Academic Press, London, 1988)
  63. B. Boashash, Time frequency signal analysis: methods and applications (Longman Cheshire, Melbourne, 1992)
  64. H.D.I. Abarbanel, Analysis of observed chaotic data (Springer, New York, 1996) [CrossRef]
  65. J.S. Bendat, A.G. Piersol, Random data analysis and measurement procedure (Wiley, New York, 2000)
  66. H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, UK, 2003), 2nd edn [CrossRef]
  67. E. Pereda, R. Quian Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals, Prog. Neurobiol. 77, 1 (2005) [CrossRef] [PubMed]
  68. C.J. Stam, Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clin. Neurophysiol. 116, 2266 (2005) [CrossRef] [PubMed]
  69. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Causality detection based on information-theoretic approaches in time series analysis, Phys. Rep. 441, 1 (2007) [CrossRef]
  70. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Phys. Rep. 438, 237 (2007) [NASA ADS] [CrossRef] [MathSciNet]
  71. H. Osterhage, K. Lehnertz, Nonlinear time series analysis in epilepsy, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3305 (2007) [CrossRef]
  72. K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, T. Wagner, Synchronization phenomena in human epileptic brain networks, J. Neurosci. Methods 183, 42 (2009) [CrossRef] [PubMed]
  73. R. Friedrich, J. Peinke, M. Sahimi, M.R.R. Tabar, Approaching complexity by stochastic methods: from biological systems to turbulence, Phys. Rep. 506, 87 (2011) [CrossRef]
  74. K. Lehnertz, Assessing directed interactions from neurophysiological signals – an overview, Physiol. Meas. 32, 1715 (2011) [CrossRef] [PubMed]
  75. P. Clemson, G. Lancaster, A. Stefanovska, Reconstructing time-dependent dynamics, Proc. IEEE 104, 223 (2016) [CrossRef]
  76. A. Porta, L. Faes, Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience, Proc. IEEE 104, 282 (2016) [CrossRef]
  77. W.S. Pritchard, D.S. Duke, Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis, Int. J. Neurosci. 67, 31 (1992) [CrossRef]
  78. K. Lehnertz, R.G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman, C.E. Elger, Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. 18, 209 (2001) [CrossRef]
  79. A. Eke, P. Herman, L. Kocsis, L.R. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiol. Meas. 23, 1 (2002) [CrossRef]
  80. J. Kwapień, S. Drożdż, Physical approach to complex systems, Phys. Rep. 515, 115 (2012) [CrossRef]
  81. A. Di Ieva, F. Grizzi, H. Jelinek, A.J. Pellionisz, G.A. Losa, Fractals in the neurosciences, part I: general principles and basic neurosciences, Neuroscientist 20, 403 (2014) [CrossRef]
  82. A. Di Ieva, F.J. Esteban, F. Grizzi, W. Klonowski, M. Martín-Landrove, Fractals in the neurosciences, part II: clinical applications and future perspectives, Neuroscientist 21, 30 (2015) [CrossRef]
  83. R. Hegger, H. Kantz, L. Matassini, T. Schreiber, Coping with non-stationarity by overembedding, Phys. Rev. Lett. 84, 4092 (2000) [CrossRef]
  84. C. Rieke, K. Sternickel, R.G. Andrzejak, C.E. Elger, P. David, K. Lehnertz, Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems, Phys. Rev. Lett. 88, 244102 (2002) [CrossRef]
  85. E.C.A. Hansen, D. Battaglia, A. Spiegler, G. Deco, V.K. Jirsa, Functional connectivity dynamics: Modeling the switching behavior of the resting state, NeuroImage 105, 525 (2015) [CrossRef]
  86. J.S. Barlow, Methods of analysis of nonstationary EEGs with emphasis on segmentation techniques: a comparative review, J. Clin. Neurophysiol. 2, 267 (1985) [CrossRef]
  87. S. Blanco, H. Garcia, R. Quian Quiroga, L. Romanelli, O.A. Rosso, Stationarity of the EEG series, IEEE Eng. Med. Biol. 4, 395 (1995) [CrossRef]
  88. T. Schreiber, Detecting and analysing nonstationarity in a time series using nonlinear cross predictions, Phys. Rev. Lett. 78, 843 (1997) [CrossRef]
  89. A. Witt, J. Kurths, A. Pikovsky, Testing stationarity in time series, Phys. Rev. E 58, 1800 (1998) [CrossRef]
  90. C. Rieke, R.G. Andrzejak, F. Mormann, K. Lehnertz, Improved statistical test for nonstationarity using recurrence time statistics, Phys. Rev. E 69, 046111 (2004) [CrossRef]
  91. T. Dikanev, D. Smirnov, R. Wennberg, J. Velazquez, B. Bezruchko, EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis, Clin. Neurophysiol. 116, 1796 (2005) [CrossRef]
  92. A.Y. Kaplan, A.A. Fingelkurts, A.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky, Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges, Signal Proc. 85, 2190 (2005) [CrossRef]
  93. S. Tong, Z. Li, Y. Zhu, N.V. Thakor, Describing the nonstationarity level of neurological signals based on quantifications of time-frequency representation, IEEE Trans. Biomed. Eng. 54, 1780 (2007) [CrossRef]
  94. S.J. Luck, An introduction to the event-related potential technique (MIT Press, Cambridge, MA, 2005)
  95. R.G. Andrzejak, A. Ledberg, G. Deco, Detecting event-related time-dependent directional couplings, New J. Phys. 8, 6 (2006) [CrossRef]
  96. S. Łeski, D.K. Wójcik, Inferring coupling strength from event-related dynamics, Phys. Rev. E 78, 41918 (2008) [CrossRef]
  97. M. Martini, T.A. Kranz, T. Wagner, K. Lehnertz, Inferring directional interactions from transient signals with symbolic transfer entropy, Phys. Rev. E 83, 011919 (2011) [CrossRef] [MathSciNet]
  98. P. Wollstadt, M. Martinez-Zarzuela, R. Vicente, F.J. Diaz-Pernas, M. Wibral, Efficient transfer entropy analysis of non-stationary neural time series, PLOS ONE 9, 1 (2014) [CrossRef]
  99. J.L. Rodgers, W.A. Nicewander, Thirteen ways to look at the correlation coefficient, Am. Stat. 42, 59 (1988) [CrossRef]
  100. C.W.J. Granger, Investigating causal relations by econometric models and cross–spectral methods, Econometrica 37, 424 (1969) [CrossRef]
  101. M. Eichler, A graphical approach for evaluating effective connectivity in neural systems, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 360, 953 (2005) [CrossRef]
  102. T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000) [CrossRef] [PubMed]
  103. Z. Liu, Measuring the degree of synchronization from time series data, Europhys. Lett. 68, 19 (2004) [CrossRef] [EDP Sciences]
  104. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators, Phys. Rev. E 64, 045202 (2001) [CrossRef]
  105. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D 144, 358 (2000) [CrossRef]
  106. J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D 134, 419 (1999) [CrossRef]
  107. R. Quian Quiroga, J. Arnhold, P. Grassberger, Learning driver-response relationships from synchronization patterns, Phys. Rev. E 61, 5142 (2000) [CrossRef]
  108. R.G. Andrzejak, D. Chicharro, K. Lehnertz, F. Mormann, Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates, Phys. Rev. E 83, 046203 (2011) [CrossRef]
  109. K.J. Friston, Functional and effective connectivity: a review, Brain Connect. 1, 13 (2011) [CrossRef] [PubMed]
  110. O. David, D. Cosmelli, K.J. Friston, Evaluation of different measures of functional connectivity using a neural mass model, NeuroImage 21, 659 (2004) [CrossRef]
  111. T. Kreuz, F. Mormann, R.G. Andrzejak, A. Kraskov, K. Lehnertz, P. Grassberger, Measuring synchronization in coupled model systems: a comparison of different approaches, Physica D 225, 29 (2007) [CrossRef] [MathSciNet]
  112. R. Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signals, Phys. Rev. E 65, 041903 (2002) [CrossRef]
  113. H. Osterhage, F. Mormann, M. Staniek, K. Lehnertz, Measuring synchronization in the epileptic brain: a comparison of different approaches, Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 3539 (2007) [CrossRef]
  114. H. Dickten, S. Porz, C.E. Elger, K. Lehnertz, Weighted and directed interactions in evolving large-scale epileptic brain networks, Sci. Rep. 6, 34824 (2016) [CrossRef]
  115. K. Lehnertz, H. Dickten, Assessing directionality and strength of coupling through symbolic analysis: an application to epilepsy patients, Philos. Trans. R. Soc. A 373, 20140094 (2015) [CrossRef]
  116. M. Paluš, M. Vejmelka, Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections, Phys. Rev. E 75, 056211 (2007) [CrossRef] [MathSciNet]
  117. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Measuring the directionality of coupling: phase versus state space dynamics and application to EEG time series, Int. J. Neural. Syst. 17, 139 (2007) [CrossRef] [PubMed]
  118. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls, Phys. Rev. E 77, 011914 (2008) [CrossRef]
  119. M. Staniek, K. Lehnertz, Symbolic transfer entropy, Phys. Rev. Lett. 100, 158101 (2008) [CrossRef] [PubMed]
  120. K.A. Blaha, A. Pikovsky, M. Rosenblum, M.T. Clark, C.G. Rusin, J.L. Hudson, Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators, Phys. Rev. E 84, 046201 (2011) [CrossRef]
  121. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise, Phys. Rev. Lett. 109, 024101 (2012) [CrossRef] [PubMed]
  122. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability, Nat. Commun. 4, 2418 (2013) [CrossRef] [PubMed]
  123. T. Stankovski, V. Ticcinelli, P.V.E. McClintock, A. Stefanovska, Coupling functions in networks of oscillators, New J. Phys. 17, 035002 (2015) [CrossRef]
  124. J. Wilting, K. Lehnertz, Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations, Eur. Phys. J. B 88, 193 (2015) [CrossRef] [EDP Sciences]
  125. M. Eichler, R. Dahlhaus, J. Sandkühler, Partial correlation analysis for the identification of synaptic connections, Biol. Cybern. 89, 289 (2003) [CrossRef]
  126. Y. Chen, G. Rangarajan, J. Feng, M. Ding, Analyzing multiple nonlinear time series with extended Granger causality, Phys. Lett. A 324, 26 (2004) [CrossRef]
  127. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Partial phase synchronization for multivariate synchronizing systems, Phys. Rev. Lett. 96, 208103 (2006) [CrossRef] [PubMed]
  128. B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C.H. Lücking, R. Dahlhaus, J. Timmer, Testing for directed influences among neural signals using partial directed coherence, J. Neurosci. Methods 152, 210 (2006) [CrossRef]
  129. S. Frenzel, B. Pompe, Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett. 99, 204101 (2007) [CrossRef]
  130. D.A. Smirnov, B.P. Bezruchko, Detection of couplings in ensembles of stochastic oscillators, Phys. Rev. E 79, 046204 (2009) [CrossRef] [MathSciNet]
  131. V.A. Vakorin, O.A. Krakovska, A.R. McIntosh, Confounding effects of indirect connections on causality estimation, J. Neurosci. Methods 184, 152 (2009) [CrossRef] [PubMed]
  132. J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104, 038701 (2010) [CrossRef] [PubMed]
  133. M. Jalili, M.G. Knyazeva, Constructing brain functional networks from EEG: partial and unpartial correlations, J. Integr. Neurosci. 10, 213 (2011) [CrossRef]
  134. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect coupling by means of recurrences, Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 1099 (2011) [CrossRef]
  135. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Escaping the curse of dimensionality in estimating multivariate transfer entropy, Phys. Rev. Lett. 108, 258701 (2012) [CrossRef]
  136. S. Stramaglia, G.-R. Wu, M. Pellicoro, D. Marinazzo, Expanding the transfer entropy to identify information circuits in complex systems, Phys. Rev. E 86, 066211 (2012) [CrossRef]
  137. D. Kugiumtzis, Partial transfer entropy on rank vectors, Eur. Phys. J. Special Topics 222, 401 (2013) [CrossRef] [EDP Sciences]
  138. L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi, H. Witte, Time-variant partial directed coherence for analysing connectivity: a methodological study, Philos. Trans. R. Soc. A 371, 20110616 (2013) [CrossRef]
  139. R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller, C. Grebogi, C. Schwarzbauer, J. Timmer, B. Schelter, The impact of latent confounders in directed network analysis in neuroscience, Philos. Trans. R. Soc. A 371, 20110612 (2013) [CrossRef]
  140. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys. 16, 085013 (2014) [CrossRef]
  141. H. Elsegai, H. Shiells, M. Thiel, B. Schelter, Network inference in the presence of latent confounders: the role of instantaneous causalities, J. Neurosci. Methods 245, 91 (2015) [CrossRef]
  142. L. Faes, D. Kugiumtzis, G. Nollo, F. Jurysta, D. Marinazzo, Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E 91, 032904 (2015) [CrossRef]
  143. W. Mader, M. Mader, J. Timmer, M. Thiel, B. Schelter, Networks: On the relation of bi-and multivariate measures, Sci. Rep. 5, 10805 (2015) [CrossRef]
  144. J. Zhao, Y. Zhou, X. Zhang, L. Chen, Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA 113, 5130 (2016) [CrossRef]
  145. Z. Albo, G.V. Di Prisco, Y. Chen, G. Rangarajan, W. Truccolo, J. Feng, R.P. Vertes, M. Ding, Is partial coherence a viable technique for identifying generators of neural oscillations? Biol. Cybern. 90, 318 (2004) [CrossRef]
  146. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Identifying true brain interaction from EEG data using the imaginary part of coherency, Clin. Neurophysiol. 115, 2292 (2004) [CrossRef] [PubMed]
  147. T. Zerenner, P. Friederichs, K. Lehnertz, A. Hense, A Gaussian graphical model approach to climate networks, Chaos 24, 023103 (2014) [CrossRef]
  148. N. Rubido, A.C. Marti, E. Bianco-Martinez, C. Grebogi, M.S. Baptista, C. Masoller, Exact detection of direct links in networks of interacting dynamical units, New J. Phys. 16, 093010 (2014) [CrossRef]
  149. T. Rings, K. Lehnertz, Distinguishing between direct and indirect directional couplings in large oscillator networks: partial or non-partial phase analyses? Chaos 26, 093106 (2016) [CrossRef]
  150. R. Guimerà, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks, Proc. Natl. Acad. Sci. USA 106, 22073 (2009) [CrossRef]
  151. B. Barzel, A.-L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31, 720 (2013) [CrossRef] [PubMed]
  152. V. Pernice, S. Rotter, Reconstruction of sparse connectivity in neural networks from spike train covariances, J. Stat. Mech. Theor. Exp. 2013, 03008 (2013) [CrossRef]
  153. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Reconstructing propagation networks with natural diversity and identifying hidden sources, Nat. Commun. 5, 4323 (2014)
  154. J. Runge, Quantifying information transfer and mediation along causal pathways in complex systems, Phys. Rev. E 92, 062829 (2015) [CrossRef]
  155. Y.V. Zaytsev, A. Morrison, M. Deger, Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity, J. Comput. Neurosci. 39, 77 (2015) [CrossRef]
  156. L. Pan, T. Zhou, L. Lü, C.-K. Hu, Predicting missing links and identifying spurious links via likelihood analysis, Sci. Rep. 6, 22955 (2016) [CrossRef]
  157. C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources, Hum. Brain Mapp. 28, 1178 (2007) [CrossRef] [PubMed]
  158. M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, C.M.A. Pennartz, An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias, NeuroImage 55, 1548 (2011) [CrossRef]
  159. C.J. Stam, E.C.W. van Straaten, Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics, NeuroImage 62, 1415 (2012) [CrossRef]
  160. M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C.J. Stam, P. Fuhr, Reproducibility of functional connectivity and graph measures based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) derived from high resolution EEG, PLOS ONE 9, 108648 (2014) [CrossRef]
  161. D. Yu, S. Boccaletti, Real-time estimation of interaction delays, Phys. Rev. E 80, 036203 (2009) [CrossRef]
  162. L.R. Peraza, A.U.R. Asghar, G. Green, D.M. Halliday, Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index, J. Neurosci. Methods 207, 189 (2012) [CrossRef]
  163. S.M. Gordon, P.J. Franaszczuk, W.D. Hairston, M. Vindiola, K. McDowell, Comparing parametric and nonparametric methods for detecting phase synchronization in EEG, J. Neurosci. Methods 212, 247 (2013) [CrossRef]
  164. S. Porz, M. Kiel, K. Lehnertz, Can spurious indications for phase synchronization due to superimposed signals be avoided? Chaos 24, 033112 (2014) [CrossRef] [PubMed]
  165. G.L. Colclough, M.W. Woolrich, P.K. Tewarie, M.J. Brookes, A.J. Quinn, S.M. Smith, How reliable are MEG resting-state connectivity metrics? NeuroImage 138, 284 (2016) [CrossRef]
  166. L. Cimponeriu, M. Rosenblum, A. Pikovsky, Estimation of delay in coupling from time series, Phys. Rev. E 70, 046213 (2004) [CrossRef]
  167. N. Wessel, A. Suhrbier, M. Riedl, N. Marwan, H. Malberg, G. Bretthauer, T. Penzel, J. Kurths, Detection of time-delayed interactions in biosignals using symbolic coupling traces, Europhys. Lett. 87, 10004 (2009) [CrossRef] [EDP Sciences]
  168. A.N. Silchenko, I. Adamchic, N. Pawelczyk, C. Hauptmann, M. Maarouf, V. Sturm, P.A. Tass, Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems, J. Neurosci. Methods 191, 32 (2010) [CrossRef]
  169. H. Dickten, K. Lehnertz, Identifying delayed directional couplings with symbolic transfer entropy, Phys. Rev. E 90, 062706 (2014) [CrossRef]
  170. H. Ye, E.R. Deyle, L.J. Gilarranz, G. Sugihara, Distinguishing time-delayed causal interactions using convergent cross mapping, Sci. Rep. 5, 14750 (2015) [CrossRef]
  171. R.G. Andrzejak, T. Kreuz, Characterizing unidirectional couplings between point processes and flows, Europhys. Lett. 96, 50012 (2011) [CrossRef] [EDP Sciences]
  172. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10, 186 (2009) [CrossRef] [PubMed]
  173. K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, S. Porz, Evolving networks in the human epileptic brain, Physica D 267, 7 (2014) [CrossRef]
  174. D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, J.M. Buldú, Functional brain networks: great expectations, hard times and the big leap forward, Philos. Trans. R. Soc. B 369, 20130525 (2014) [CrossRef]
  175. S. Bialonski, M.-T. Horstmann, K. Lehnertz, From brain to earth and climate systems: Small-world interaction networks or not? Chaos 20, 013134 (2010) [CrossRef] [MathSciNet] [PubMed]
  176. B.C.M. van Wijk, C.J. Stam, A. Daffertshofer, Comparing brain networks of different size and connectivity density using graph theory, PLOS ONE 5, 13701 (2010) [CrossRef] [PubMed]
  177. J. Hlinka, D. Hartman, M. Paluš, Small-world topology of functional connectivity in randomly connected dynamical systems, Chaos 22, 033107 (2012) [CrossRef]
  178. A. Joudaki, N. Salehi, M. Jalili, M.G. Knyazeva, EEG-based functional brain networks: does the network size matter? PLOS ONE 7, 35673 (2012) [CrossRef]
  179. A. Fornito, A. Zalesky, M. Breakspear, Graph analysis of the human connectome: promise, progress, and pitfalls, NeuroImage 80, 426 (2013) [CrossRef]
  180. M.L. Stanley, M.N. Moussa, B. Paolini, R.G. Lyday, J.H. Burdette, P.J. Laurienti, Defining nodes in complex brain networks, Front. Comput. Neurosci. 7, 169 (2013) [CrossRef]
  181. V. Wens, Investigating complex networks with inverse models: analytical aspects of spatial leakage and connectivity estimation, Phys. Rev. E 91, 012823 (2015) [CrossRef]
  182. D. Papo, M. Zanin, J.H. Martínez, J.M. Buldú, Beware of the small-world neuroscientist! Front. Hum. Neurosci. 10, 96 (2016)
  183. B.S. Anderson, C. Butts, K. Carley, The interaction of size and density with graph-level indices, Soc. Netw. 21, 239 (1999) [CrossRef]
  184. A.A. Ioannides, Dynamic functional connectivity, Curr. Opin. Neurobiol. 17, 161 (2007) [CrossRef]
  185. M.A. Kramer, U.T. Eden, S.S. Cash, E.D. Kolaczyk, Network inference with confidence from multivariate time series, Phys. Rev. E 79, 061916 (2009) [CrossRef] [MathSciNet]
  186. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage 52, 1059 (2010) [CrossRef] [PubMed]
  187. M. Zanin, P. Sousa, D. Papo, R. Bajo, J. Garcia-Prieto, F. del Pozo, E. Menasalvas, S. Boccaletti, Optimizing functional network representation of multivariate time series, Sci. Rep. 2, 630 (2012) [CrossRef] [PubMed]
  188. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58, 765 (1986) [CrossRef]
  189. U. Lee, S. Kim, K.-Y. Jung, Classification of epilepsy types through global network analysis of scalp electroencephalograms, Phys. Rev. E 73, 041920 (2006) [CrossRef]
  190. C.J. Ortega, R.G. Sola, J. Pastor, Complex network analysis of human ECoG data, Neurosci. Lett. 447, 129 (2008) [CrossRef]
  191. C. Stam, P. Tewarie, E. Van Dellen, E. Van Straaten, A. Hillebrand, P. Van Mieghem, The trees and the forest: characterization of complex brain networks with minimum spanning trees, Int. J. Psychophysiol. 92, 129 (2014) [CrossRef]
  192. G. Ansmann, K. Lehnertz, Surrogate-assisted analysis of weighted functional brain networks, J. Neurosci. Methods 208, 165 (2012) [CrossRef]
  193. P. Macdonald, E. Almaas, A.-L. Barabási, Minimum spanning trees of weighted scale-free networks, Europhys. Lett. 72, 308 (2005) [CrossRef] [EDP Sciences]
  194. F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, A. Tocci, S. Salinari, M. Marciani, H. Witte, A. Colosimo, F. Babiloni, Brain network analysis from high-resolution EEG recordings by the application of theoretical graph indexes, IEEE Trans. Neural Syst. Rehab. Eng. 16, 442 (2008) [CrossRef]
  195. W.J. Marshall, C.L. Lackner, P. Marriott, D.L. Santesso, S.J. Segalowitz, Using phase shift Granger causality to measure directed connectivity in EEG recordings, Brain Connect. 4, 826 (2014) [CrossRef]
  196. M.H.I. Shovon, N. Nandagopal, R. Vijayalakshmi, J.T. Du, B. Cocks, Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy, Neural Process. Lett. 45, 807 (2016) [CrossRef]
  197. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep. 424, 175 (2006) [CrossRef] [MathSciNet]
  198. S. Fortunato, Community detection in graphs, Phys. Rep. 486, 75 (2010) [CrossRef] [MathSciNet]
  199. M. Barthélemy, Spatial networks, Phys. Rep. 499, 1 (2011) [CrossRef] [MathSciNet]
  200. M.E.J. Newman, Communities, modules and large-scale structure in networks, Nat. Phys. 8, 25 (2012) [CrossRef]
  201. S. Bialonski, M. Wendler, K. Lehnertz, Unraveling spurious properties of interaction networks with tailored random networks, PLOS ONE 6, 22826 (2011) [CrossRef]
  202. J. Saramäki, M. Kivelä, J.P. Onnela, K. Kaski, J. Kertész, Generalizations of the clustering coefficient to weighted complex networks, Phys. Rev. E 75, 027105 (2007) [CrossRef]
  203. D.S. Bassett, E. Bullmore, Small-world brain networks, Neuroscientist 12, 512 (2006) [CrossRef] [PubMed]
  204. J.C. Reijneveld, S.C. Ponten, H.W. Berendse, C.J. Stam, The application of graph theoretical analysis to complex networks in the brain, Clin. Neurophysiol. 118, 2317 (2007) [CrossRef]
  205. C.J. Stam, Modern network science of neurological disorders, Nat. Rev. Neurosci. 15, 683 (2014) [CrossRef]
  206. C.C. Hilgetag, A. Goulas, Is the brain really a small-world network? Brain Struct. Funct. 221, 2361 (2016) [CrossRef]
  207. M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) [CrossRef] [PubMed]
  208. S. Bialonski, K. Lehnertz, Assortative mixing in functional brain networks during epileptic seizures, Chaos 23, 033139 (2013) [CrossRef] [PubMed]
  209. F.M. Atay, T. Bıyıkoğlu, J. Jost, Network synchronization: Spectral versus statistical properties, Physica D 224, 35 (2006) [CrossRef] [MathSciNet]
  210. F. Comellas, S. Gago, Synchronizability of complex networks, J. Phys. A 40, 4483 (2007) [CrossRef]
  211. D. Koschützki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, Centrality indices, in Network analysis. Lecture Notes in Computer Science, edited by U. Brandes, T. Erlebach (Springer, Berlin, Heidelberg, 2005), Vol. 3418, p. 16 [CrossRef]
  212. M.-T. Kuhnert, C. Geier, C.E. Elger, K. Lehnertz, Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches, Chaos 22, 023142 (2012) [CrossRef]
  213. B. Efron, Large-scale simultaneous hypothesis testing: the choice of a null hypothesis, JASA 99, 465 (2004)
  214. B. Efron, The jackknife, the bootstrap and other resampling plans (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1982) [CrossRef]
  215. R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, T. Kreuz, Bivariate surrogate techniques: necessity, strengths, and caveats, Phys. Rev. E 68, 066202 (2003) [CrossRef]
  216. M. Small, D. Yu, R.G. Harrison, Surrogate test for pseudoperiodic time series data, Phys. Rev. Lett. 87, 188101 (2001) [CrossRef]
  217. K.T. Dolan, A. Neiman, Surrogate analysis of coherent multichannel data, Phys. Rev. E 65, 026108 (2002) [CrossRef]
  218. L. Faes, G.D. Pinna, A. Porta, R. Maestri, G. Nollo, Surrogate data analysis for assessing the significance of the coherence function, IEEE Trans. Biomed. Eng. 51, 1156 (2004) [CrossRef]
  219. M. Breakspear, M. Brammer, P.A. Robinson, Construction of multivariate surrogate sets from nonlinear data using the wavelet transform, Physica D 182, 1 (2003) [CrossRef]
  220. C.J. Keylock, A wavelet-based method for surrogate data generation, Physica D 225, 219 (2007) [CrossRef]
  221. M. Paluš, Bootstrapping multifractals: Surrogate data from random cascades on wavelet dyadic trees, Phys. Rev. Lett. 101, 134101 (2008) [CrossRef]
  222. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchronization: twin surrogates revisited, Chaos 19, 015108 (2009) [CrossRef]
  223. T. Nakamura, M. Small, Y. Hirata, Testing for nonlinearity in irregular fluctuations with long-term trends, Phys. Rev. E 74, 026205 (2006) [CrossRef]
  224. T. Nakamura, T. Tanizawa, M. Small, Constructing networks from a dynamical system perspective for multivariate nonlinear time series, Phys. Rev. E 93, 032323 (2016) [CrossRef]
  225. T. Suzuki, T. Ikeguchi, M. Suzuki, Effects of data windows on the methods of surrogate data, Phys. Rev. E 71, 056708 (2005) [CrossRef]
  226. J. Lucio, R. Valdés, L. Rodríguez, Improvements to surrogate data methods for nonstationary time series, Phys. Rev. E 85, 056202 (2012) [CrossRef]
  227. A.M. Bronstein, M.M. Bronstein, R. Kimmel, Efficient computation of isometry-invariant distances between surfaces, SIAM J. Sci. Comput. 28, 1812 (2006) [CrossRef]
  228. M. Muskulus, S. Houweling, S. Verduyn-Lunel, A. Daffertshofer, Functional similarities and distance properties, J. Neurosci. Methods 183, 31 (2009) [CrossRef]
  229. F. Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11, 417 (2011) [CrossRef] [MathSciNet]
  230. H. Lee, M.K. Chung, H. Kang, B.-N. Kim, D.S. Lee, Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2011), pp. 302–309
  231. D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Robust detection of dynamic community structure in networks, Chaos 23, 013142 (2013) [CrossRef] [MathSciNet] [PubMed]
  232. Y. Hulovatyy, H. Chen, T. Milenković, Exploring the structure and function of temporal networks with dynamic graphlets, Bioinformatics 31, 171 (2015) [CrossRef] [PubMed]
  233. N. Dianati, Unwinding the hairball graph: pruning algorithms for weighted complex networks, Phys. Rev. E 93, 012304 (2016) [CrossRef]
  234. M.J. Cook, T.J. O'Brien, S.F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D'Souza, R. Yerra, J. Archer, L. Litewka, S. Hosking, P. Lightfoot, V. Ruedebusch, W.D. Sheffield, D. Snyder, K. Leyde, D. Himes, Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study, Lancet Neurol. 12, 563 (2013) [CrossRef]
  235. F. Mormann, R. Andrzejak, C.E. Elger, K. Lehnertz, Seizure prediction: the long and winding road, Brain 130, 314 (2007) [CrossRef] [PubMed]
  236. S. Ramgopal, S. Thome-Souza, M. Jackson, N.E. Kadish, I.S. Fernández, J. Klehm, W. Bosl, C. Reinsberger, S. Schachter, T. Loddenkemper, Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behav. 37, 291 (2014) [CrossRef]
  237. K. Gadhoumi, J.-M. Lina, F. Mormann, J. Gotman, Seizure prediction for therapeutic devices: a review, J. Neurosci. Methods 260, 270 (2016) [CrossRef]
  238. K. Lehnertz, H. Dickten, S. Porz, C. Helmstaedter, C.E. Elger, Predictability of uncontrollable multifocal seizures – towards new treatment options, Sci. Rep. 6, 24584 (2016) [CrossRef]
  239. R.S. Fisher, Therapeutic devices for epilepsy, Ann. Neurol. 71, 157 (2012) [CrossRef]
  240. B.H. Brinkmann, J. Wagenaar, D. Abbot, P. Adkins, S.C. Bosshard, M. Chen, Q.M. Tieng, J. He, F.J. Muñoz-Almaraz, P. Botella-Rocamora, J. Pardo, F. Zamora-Martinez, M. Hills, W. Wu, I. Korshunova, W. Cukierski, C. Vite, E.E. Patterson, B. Litt, G.A. Worrell, Crowdsourcing reproducible seizure forecasting in human and canine epilepsy, Brain 139, 1713 (2016) [CrossRef]
  241. H. Feldwisch-Drentrup, M. Staniek, A. Schulze-Bonhage, J. Timmer, H. Dickten, C.E. Elger, B. Schelter, K. Lehnertz, Identification of preseizure states in epilepsy: a data-driven approach for multichannel EEG recordings, Front. Comput. Neurosci. 5, 32 (2011) [CrossRef]
  242. M.J. Cook, A. Varsavsky, D. Himes, K. Leyde, S.F. Berkovic, T. O’Brien, I. Mareels, Long memory processes are revealed in the dynamics of the epileptic brain, Front. Neurol. 5, 217 (2014)
  243. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data, SIAM Rev. 51, 661 (2009) [NASA ADS] [CrossRef] [MathSciNet]
  244. E. Taubøll, A. Lundervold, L. Gjerstada, Temporal distribution of seizures in epilepsy, Epilepsy Res. 8, 153 (1991) [CrossRef]
  245. P. Suffczynski, S. Kalitzin, F.H.L. da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience 126, 467 (2004) [CrossRef]
  246. C. Meisel, A. Schulze-Bonhage, D. Freestone, M.J. Cook, P. Achermann, D. Plenz, Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle, Proc. Natl. Acad. Sci. USA 112, 14694 (2015) [CrossRef]
  247. T. Kreuz, R.G. Andrzejak, F. Mormann, A. Kraskov, H. Stögbauer, C.E. Elger, K. Lehnertz, P. Grassberger, Measure profile surrogates: a method to validate the performance of epileptic seizure prediction algorithms, Phys. Rev. E 69, 061915 (2004) [CrossRef]
  248. M.A. Kramer, S.S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18, 360 (2012) [CrossRef]
  249. M.P. Richardson, Large scale brain models of epilepsy: dynamics meets connectomics, J. Neurol. Neurosurg. Psychiatry 83, 1238 (2012) [CrossRef] [PubMed]
  250. K. Schindler, H. Leung, C.E. Elger, K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain 130, 65 (2007) [CrossRef]
  251. K. Schindler, C.E. Elger, K. Lehnertz, Increasing synchronization may promote seizure termination: Evidence from status epilepticus, Clin. Neurophysiol. 118, 1955 (2007) [CrossRef] [PubMed]
  252. K. Schindler, S. Bialonski, M.-T. Horstmann, C.E. Elger, K. Lehnertz, Evolving functional network properties and synchronizability during human epileptic seizures, Chaos 18, 033119 (2008) [CrossRef] [PubMed]
  253. M.A. Kramer, E.D. Kolaczyk, H.E. Kirsch, Emergent network topology at seizure onset in humans, Epilepsy Res. 79, 173 (2008) [CrossRef] [PubMed]
  254. S.C. Ponten, L. Douw, F. Bartolomei, J.C. Reijneveld, C.J. Stam, Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analysis, Exp. Neurol. 217, 197 (2009) [CrossRef] [PubMed]
  255. M.A. Kramer, W. Truccolo, U.T. Eden, K.Q. Lepage, L.R. Hochberg, E.N. Eskandar, J.R. Madsen, J.W. Lee, A. Maheshwari, E. Halgren, C.J. Chu, S.S. Cash, Human seizures self-terminate across spatial scales via a critical transition, Proc. Natl. Acad. Sci. USA 109, 21116 (2012) [CrossRef]
  256. S.P. Burns, S. Santaniello, R.B. Yaffe, C.C. Jouny, N.E. Crone, G.K. Bergey, W.S. Anderson, S.V. Sarma, Network dynamics of the brain and influence of the epileptic seizure onset zone, Proc. Natl. Acad. Sci. USA 111, 5321 (2014) [CrossRef]
  257. C. Geier, S. Bialonski, C.E. Elger, K. Lehnertz, How important is the seizure onset zone for seizure dynamics? Seizure 25, 160 (2015) [CrossRef] [PubMed]
  258. A.N. Khambhati, K.A. Davis, B.S. Oommen, S.H. Chen, T.H. Lucas, B. Litt, D.S. Bassett, Dynamic network drivers of seizure generation, propagation and termination in human neocortical epilepsy, PLoS Comput. Biol. 11, 1 (2015) [CrossRef]
  259. F. Zubler, H. Gast, E. Abela, C. Rummel, M. Hauf, R. Wiest, C. Pollo, K. Schindler, Detecting functional hubs of ictogenic networks, Brain Topogr. 28, 305 (2015) [CrossRef]
  260. M. Goodfellow, C. Rummel, E. Abela, M.P. Richardson, K. Schindler, J.R. Terry, Estimation of brain network ictogenicity predicts outcome from epilepsy surgery, Sci. Rep. 6, 29215 (2016) [CrossRef]
  261. M.-T. Horstmann, S. Bialonski, N. Noennig, H. Mai, J. Prusseit, J. Wellmer, H. Hinrichs, K. Lehnertz, State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG, Clin. Neurophysiol. 121, 172 (2010) [CrossRef]
  262. M.-T. Kuhnert, S. Bialonski, N. Noennig, H. Mai, H. Hinrichs, C. Helmstaedter, K. Lehnertz, Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks, PLOS ONE 8, 80273 (2013) [CrossRef]
  263. E. van Diessen, W.J.E.M. Zweiphenning, F.E. Jansen, C.J. Stam, K.P.J. Braun, W.M. Otte, Brain network organization in focal epilepsy: a systematic review and meta-analysis, PLOS ONE 9, 114606 (2014) [CrossRef]
  264. M.-T. Kuhnert, C.E. Elger, K. Lehnertz, Long-term variability of global statistical properties of epileptic brain networks, Chaos 20, 043126 (2010) [CrossRef]
  265. C. Geier, K. Lehnertz, S. Bialonski, Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing, Front. Hum. Neurosci. 9, 462 (2015) [CrossRef]
  266. M.A. Kramer, U.T. Eden, K.Q. Lepage, E.D. Kolaczyk, M.T. Bianchi, S.S. Cash, Emergence of persistent networks in long-term intracranial EEG recordings, J. Neurosci. 31, 15757 (2011) [CrossRef]
  267. C. Geier, K. Lehnertz, Long-term variability of importance of brain regions in evolving epileptic brain networks, Chaos 27, 043112 (2017) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.