Open Access
Issue
EPJ Nonlinear Biomed. Phys.
Volume 5, 2017
Article Number 3
Number of page(s) 11
Section Physics of Biological Systems and Their Interactions
DOI https://doi.org/10.1051/epjnbp/2017002
Published online 07 September 2017
  1. S.A. Chkhenkeli, M. Sramka, T.N. Rakviashvili, G.S. Lortkipanidze, G.E. Magalashvili, E. Bregvadze et al., Bitemporal intractable epilepsy: could it be surgically treatable? Stereotact. Funct. Neurosurg. 91, 104 (2013) [CrossRef] [Google Scholar]
  2. F.H. Lopes da Silva, Epilepsy as a dynamic disease of neuronal networks, in Epilepsy: Basic Principles and Diagnosis. Handbook of Clinical Neurology, edited by H. Stefan, W. Theodore (Elsevier, Amsterdam, 2012), pp. 35–62 [CrossRef] [Google Scholar]
  3. R.T. Constable, D. Scheinost, E.S. Finn, X. Shen, M. Hampson, F.S. Winstanley et al., Potential use and challenges of functional connectivity mapping in intractable epilepsy, Front. Neurol. 4, 39 (2013) [CrossRef] [Google Scholar]
  4. K. Lehnertz, S. Bialonski, M.T. Horstmann, D. Krug, A. Rothkegel, M. Staniek et al., Synchronization phenomena in human epileptic brain networks, J. Neurosci. Methods 183, 42 (2009) [CrossRef] [PubMed] [Google Scholar]
  5. B.C. Bernhardt, S. Hong, A. Bernasconi, N. Bernasconi, Imaging structural and functional brain networks in temporal lobe epilepsy, Front. Hum. Neurosci. 7, 624 (2013) [CrossRef] [Google Scholar]
  6. L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi et al., Time-variant partial directed coherence for analysing connectivity: a methodological study, Philos. Trans. A: Math. Phys. Eng. Sci. 371, 20110616 (2013) [CrossRef] [Google Scholar]
  7. C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37, 414 (1969) [Google Scholar]
  8. T. Milde, L. Leistritz, L. Astolfi, W.H. Miltner, T. Weiss, F. Babiloni et al., A new Kalman filter approach for the estimation of high-dimensional time-variant multivariate AR models and its application in analysis of laser-evoked brain potentials, NeuroImage 50, 960 (2010) [CrossRef] [Google Scholar]
  9. K.J. Blinowska, Review of the methods of determination of directed connectivity from multichannel data, Med. Biol. Eng. Comput. 49, 521 (2011) [CrossRef] [PubMed] [Google Scholar]
  10. T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000) [CrossRef] [PubMed] [Google Scholar]
  11. R. Vicente, M. Wibral, M. Lindner, G. Pipa, Transfer entropy – a model-free measure of effective connectivity for the neurosciences, J. Comput. Neurosci. 30, 45 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. P. Wollstadt, M. Martinez-Zarzuela, R. Vicente, F.J. Diaz-Pernas, M. Wibral, Efficient transfer entropy analysis of non-stationary neural time series, PLOS ONE 9, e102833 (2014) [CrossRef] [Google Scholar]
  13. G. Sugihara, R. May, H. Ye, C.H. Hsieh, E. Deyle, M. Fogarty et al., Detecting causality in complex ecosystems, Science 338, 496 (2012) [CrossRef] [PubMed] [Google Scholar]
  14. E.R. Deyle, M. Fogarty, C.H. Hsieh, L. Kaufman, A.D. MacCall, S.B. Munch et al., Predicting climate effects on Pacific sardine, Proc. Natl. Acad. Sci. USA 110, 6430 (2013) [CrossRef] [Google Scholar]
  15. E.H. van Nes, M. Scheffer, V. Brovkin, T.M. Lenton, H. Ye, E. Deyle et al., Causal feedbacks in climate change, Nat. Clim. Change 5, 445 (2015) [CrossRef] [Google Scholar]
  16. K. Schiecke, B. Pester, D. Piper, F. Benninger, M. Feucht, L. Leistritz et al., Nonlinear directed interactions between HRV and EEG activity in children with TLE, IEEE Trans. Biomed. Eng. 63, 2497 (2016) [CrossRef] [Google Scholar]
  17. K. Schiecke, M. Wacker, D. Piper, F. Benninger, M. Feucht, H. Witte, Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy, IEEE Trans. Biomed. Eng. 61, 1798 (2014) [CrossRef] [Google Scholar]
  18. H. Mayer, F. Benninger, L. Urak, B. Plattner, J. Geldner, M. Feucht, EKG abnormalities in children and adolescents with symptomatic temporal lobe epilepsy, Neurology 63, 324 (2004) [CrossRef] [Google Scholar]
  19. R. Oostenveld, P. Fries, E. Maris, J.M. Schoffelen, FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci. 2011, 156869 (2011) [Google Scholar]
  20. D. Piper, R. Strungaru, H. Witte, Artefact removal approach for epileptic EEG data, UPB Sci. Bull. Ser. C 77, 213 (2015) [Google Scholar]
  21. N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 1291 (2010) [CrossRef] [Google Scholar]
  22. N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903 (1998) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Wacker, H. Witte, Time–frequency techniques in biomedical signal analysis. A tutorial review of similarities and differences, Method Inform. Med. 52, 279 (2013) [CrossRef] [Google Scholar]
  24. P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank, IEEE Signal Proc. Lett. 11, 112 (2004) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. N.U. Rehman, D.P. Mandic, Filter bank property of multivariate empirical mode decomposition, IEEE Trans. Signal Process. 59, 2421 (2011) [CrossRef] [Google Scholar]
  26. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time-series – the method of surrogate data, Physica D 58, 77 (1992) [NASA ADS] [CrossRef] [Google Scholar]
  27. D. Piper, K. Schiecke, B. Pester, F. Benninger, M. Feucht, H. Witte, Time-variant coherence between heart rate variability and EEG activity in epileptic patients: an advanced coupling analysis between physiological networks, New J. Phys. 16, 115012 (2014) [CrossRef] [Google Scholar]
  28. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993) [CrossRef] [Google Scholar]
  29. P.J. Franaszczuk, G.K. Bergey, Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures, Brain Topogr. 11, 13 (1998) [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Y.K. Dai, W.B. Zhang, D.L. Dickens, B. He, Source connectivity analysis from MEG and its application to epilepsy source localization, Brain Topogr. 25, 157 (2012) [CrossRef] [Google Scholar]
  31. C. Wilke, G.A. Worrell, B. He, Connectivity analysis of ictal activity from electrocorticography, Epilepsia 50, 35 (2009) [Google Scholar]
  32. G. Bettus, F. Wendling, M. Guye, L. Valton, J. Regis, P. Chauvel et al., Enhanced EEG functional connectivity in mesial temporal lobe epilepsy, Epilepsy Res. 81, 58 (2008) [CrossRef] [Google Scholar]
  33. A.E.P. Villa, I.V. Tetko, Cross-frequency coupling in mesiotemporal EEG recordings of epileptic patients, J. Physiol. 104, 197 (2010) [Google Scholar]
  34. H. Stefan, F.H. Lopes da Silva, Epileptic neuronal networks: methods of identification and clinical relevance, Front. Neurol. 4, 8 (2013) [CrossRef] [Google Scholar]
  35. M. Winterhalder, B. Schelter, W. Hesse, K. Schwab, L. Leistritz, D. Klan et al., Comparison directed of linear signal processing techniques to infer interactions in multivariate neural systems, Signal Process. 85, 2137 (2005) [CrossRef] [Google Scholar]
  36. D. Prichard, J. Theiler, Generating surrogate data for time-series with several simultaneously measured variables, Phys. Rev. Lett. 73, 951 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  37. S. Haufe, V.V. Nikulin, K.R. Muller, G. Nolte, A critical assessment of connectivity measures for EEG data: a simulation study, NeuroImage 64, 120 (2013) [CrossRef] [Google Scholar]
  38. D. Sakellariou, A.M. Koupparis, V. Kokkinos, M. Koutroumanidis, G.K. Kostopoulos, Connectivity measures in EEG microstructural sleep elements, Front. Neuroinform. 10, 5 (2016) [CrossRef] [Google Scholar]
  39. A. Papana, C. Kyrtsou, D. Kugiumtzis, C. Diks, Simulation study of direct causality measures in multivariate time series, Entropy 15, 2635 (2013) [CrossRef] [Google Scholar]
  40. K. Lehnertz, H. Dickten, Assessing directionality and strength of coupling through symbolic analysis: an application to epilepsy patients, Philos. Trans. A: Math. Phys. Eng. Sci. 373, 20140094 (2015) [CrossRef] [Google Scholar]
  41. R.P. Bartsch, K.K. Liu, A. Bashan, P. Ivanov, Network physiology: how organ systems dynamically interact, PLOS ONE 10, e0142143 (2015) [CrossRef] [Google Scholar]
  42. L. Faes, D. Marinazzo, F. Jurysta, G. Nollo, Linear and non-linear brain-heart and brain-brain interactions during sleep, Physiol. Meas. 36, 683 (2015) [CrossRef] [Google Scholar]
  43. G. Pfurtscheller, M. Walther, G. Bauernfeind, R.J. Barry, H. Witte, G.R. Muller-Putz, Entrainment of spontaneous cerebral hemodynamic oscillations to behavioral responses, Neurosci. Lett. 566, 93 (2014) [CrossRef] [Google Scholar]
  44. P.C. Ivanov, R.P. Bartsch, Network physiology: mapping interactions between networks of physiologic networks, in Networks of Networks: The Last Frontier of Complexity, edited by G. D'Agostino, A. Scala (Springer International Publishing, Cham, 2014), pp. 203–222 [CrossRef] [Google Scholar]