Open Access
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Article Number 2
Number of page(s) 28
Published online 10 February 2014
  1. Wise RJS, Greene J, Buechel C, Scott SK: Brain regions involved in articulation.Lancet 1999, 353:1057–1061. [Google Scholar]
  2. Riecker A, Mathiak K, Wildgruper D, Erb M, Hertrich I, Grodd W, Ackermann H: fMRI reveals two distinct cerebral networks subserving speech motor control.Neurology 2005, 64:700–706. [Google Scholar]
  3. Hickok G, Poeppel D: The cortical organization of speech processing.Nat Rev Neurosci 2007, 8:393–402. [Google Scholar]
  4. McClelland JL, Elman JL: The TRACE model of speech perception.Cogn Psychol 1986, 18:1–86. [Google Scholar]
  5. Li P, Farkas I, MacWhinney B: Early lexical development in a self-organizing neural network.Neural Netw 2004, 17:1345–1362. [Google Scholar]
  6. Westermann G, Miranda ER: A new model of sensorimotor coupling in the development of speech.Brain Lang 2004, 89:393–400. [Google Scholar]
  7. Guenther FH: Cortical interaction underlying the production of speech sounds.J Commun Disord 2006, 39:350–365. [Google Scholar]
  8. Garagnani M, Wennekers T, Pulvermüller F: A neuroanatomically grounded Hebbian-learning model of attention-language interactions in the human brain.Eur J Neurosci 2008, 27:492–513. [Google Scholar]
  9. Wennekers T, Garagnani M, Pulvermüller F: Language models based on Hebbian cell assemblies.J Physiol Paris 2006, 100:16–30. [Google Scholar]
  10. Guenther FH, Ghosh SS, Tourville JA: Neural modeling and imaging of the cortical interactions underlying syllable production.Brain Lang 2006, 96:280–301. [Google Scholar]
  11. Guenther FH, Vladusich T: A neural theory of speech acquisition and production.J Neurolinguistics 2012, 25:408–422. [Google Scholar]
  12. Perkell JS: Movement goals and feedback and feedforward control mechanisms in speech production.J Neurolinguistics 2012, 25:382–407. [Google Scholar]
  13. Arbib MA, Erdi P, Szentagothai J: Neural Organization. Cambridge, MA: The MIT Press; 1998. [Google Scholar]
  14. Kuhl PK: Early language acquisition: cracking the speech code.Nat Rev Neurosci 2004, 5:831–843. [Google Scholar]
  15. Gerstner W, Kistler W: Spiking Neuron Models. Cambridge, UK: Cambridge University Press; 2002. [Google Scholar]
  16. Kasabov N: To spike or not to spike: A probabilistic spiking neuron model.Neural Netw 2010, 23:16–19. [Google Scholar]
  17. Oberauer K, Lewandowsky S: Modeling working memory: a computational implementation of the Time-Based Resource-Sharing theory.Psychon Bull Rev 2011, 18:10–45. [Google Scholar]
  18. Bednar JA, Kelkar A, Miikkulainen R: Scaling self-organizing maps to model large cortical networks.Neuroinformatics 2004, 2:275–301. [Google Scholar]
  19. Kohonen T: The self-organizing map.Proc IEEE 1990, 78:1464–1480. [Google Scholar]
  20. Kohonen T: Things you haven’t heard about the self-organizing map. In Proceedings of IEEE International Conference on Neural Networks. USA: ICNN; 1993:1147–1156. [Google Scholar]
  21. Kohonen T: Self-Organizing Maps. 3rd edition. Berlin: Springer; 2001. [Google Scholar]
  22. Kröger BJ, Birkholz P, Kannampuzha J, Kaufmann E, Neuschaefer-Rube C: Towards the acquisition of a sensorimotor vocal tract action repository within a neural model of speech processing. In Analysis of Verbal and Nonverbal Communication and Enactment: The Processing Issues (LNCS 6800). Edited by: Esposito A, Vinciarelli A, Vicsi K, Pelachaud C, Nijholt A. Berlin, Germany: Springer; 2011:287–293. [Google Scholar]
  23. Kröger BJ, Kopp S, Lowit A: A model for production, perception, and acquisition of actions in face-to-face communication.Cogn Process 2010, 11:187–205. [Google Scholar]
  24. Kröger BJ, Birkholz P, Kannampuzha J, Eckers C, Kaufmann E, Neuschaefer-Rube C: Neurobiological interpretation of a quantitative target approximation model for speech actions. In Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2011. Edited by: Kröger BJ, Birkholz P. Dresden, Germany: TUDpress; 2011:184–194. [Google Scholar]
  25. Kröger BJ, Birkholz P: A gesture-based concept for speech movement control in articulatory speech synthesis. In Verbal and Nonverbal Communication Behaviours (LNAI 4775). Edited by: Esposito A, Faundez-Zanuy M, Keller E, Marinaro M. Berlin: Springer; 2007:174–189. [Google Scholar]
  26. Birkholz P, Jackel D, Kröger BJ: Construction and control of a three-dimensional vocal tract model. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. USA: ICASSP; 2006:873–876. [Google Scholar]
  27. Birkholz P, Jackel D, Kröger BJ: Simulation of losses due to turbulence in the time-varying vocal system.IEEE Transactions on Audio, Speech, and Language Processing 2007, 15:1218–1225. [Google Scholar]
  28. Levelt WJM, Roelofs A, Meyer A: A theory of lexical access in speech production.Behav Brain Sci 1999, 22:1–75. [Google Scholar]
  29. Elman JL: An alternative view of the mental lexicon.Trends Cogn Sci 2004, 8:301–306. [Google Scholar]
  30. Cisek P: Neural representations of motor plans, desired trajectories and controlled objects.Cogn Process 2005, 6:15–24. [Google Scholar]
  31. Saltzman E, Munhall KG: A dynamical approach to gestural patterning in speech production.Ecol Psychol 1989, 1:333–382. [Google Scholar]
  32. Kröger BJ: A gestural production model and its application to reduction in German.Phonetica 1993, 50:213–233. [Google Scholar]
  33. Kröger BJ, Schröder G, Opgen-Rhein C: A gesture-based dynamic model describing articulatory movement data.J Acoust Soc Am 1995, 98:1878–1889. [Google Scholar]
  34. Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF: Reconstructing speech from human auditory cortex.PLoS Biol 2012, 10:e1001251. doi:10.1371/journal.pbio.1001251 [Google Scholar]
  35. Golfinopoulos E, Tourville JA, Guenther FH: The integration of large-scale neural network modeling and functional brain imaging in speech motor control.Neuroimage 2010, 52:862–874. [Google Scholar]
  36. Kröger BJ, Birkholz P, Lowit A: Phonemic, sensory, and motor representations in an action-based neurocomputational model of speech production (ACT). In Speech Motor Control: New developments in basic and applied research. Edited by: Maassen B, Van Lieshout P. New York: Oxford: University Press; 2010:23–36. [Google Scholar]
  37. Kröger BJ, Birkholz P, Kannampuzha J, Neuschaefer-Rube C: Modeling sensory-to-motor mappings using neural nets and a 3D articulatory speech synthesizer. In Proceedings of the 9th International Conference on Spoken Language Processing. USA: ICSLP & Interspeech 2006; 2006:565–568. [Google Scholar]
  38. Li P, Zhao X, Mac Whinney B: Dynamic self-organization and early lexical development in children.Cognit Sci 2007, 31:581–612. [Google Scholar]
  39. Meltzoff AN, Moore MK: Explaining facial imitation: a theoretical model.Early Development and Parenting 1997, 6:179–192. [Google Scholar]
  40. Knapp ML, Hall JA: Nonverbal Communication in Human Interaction. 7th edition. Wadsworth, USA: Cengage Learning; 2010. [Google Scholar]
  41. Tomasello M: Origins of Human Communication. Cambridge, MA: The MIT Press; 2008. [Google Scholar]
  42. Kröger BJ, Birkholz P, Neuschaefer-Rube C: Towards an articulation-based developmental robotics approach for word processing in face-to-face communication.PALADYN Journal of Behavioral Robotics 2011, 2:82–93. [Google Scholar]
  43. Johnson K: Speaker normalization in speech perception. In The Handbook of Speech Perception. Edited by: Pisoni DB, Remez RE. Oxford, UK: Blackwell; 2008:ch15. [Google Scholar]
  44. Kröger BJ, Kannampuzha J, Neuschaefer-Rube C: Towards a neurocomputational model of speech production and perception.Speech Comm 2009, 51:793–809. [Google Scholar]
  45. Oller DK, Eilers RE: The role of audition in infant babbling.Child Dev 1988, 59:441–449. [Google Scholar]
  46. De Boysson-Bardies B, Sagart L, Durand C: Discernible differences in the babbling of infants according to target language.J Child Lang 1984, 11:1–15. [Google Scholar]
  47. Kröger BJ, Kannampuzha J, Lowit A, Neuschaefer-Rube C: Phonetotopy within a neurocomputational model of speech production and speech acquisition. In Some Aspects of Speech and the Brain. Edited by: Fuchs S, Loevenbruck H, Pape D, Perrier P. Berlin: Peter Lang; 2009:59–90. [Google Scholar]
  48. Kröger BJ, Miller N, Lowit A, Neuschaefer-Rube C: Defective neural motor speech mappings as a source for apraxia of speech: Evidence from a quantitative neural model of speech processing. In Assessment of Motor Speech Disorders. Edited by: Lowit A, Kent R. San Diego, CA: Plural Publishing; 2011:325–346. [Google Scholar]
  49. Pierrehumbert JB: Exemplar dynamics, word frequency, lenition and contrast. In Frequency Effects and Emergent Grammar. Edited by: Bybee J, Hopper P. Amsterdam: John Benjamins; 2001:137–158. [Google Scholar]
  50. Bauer D, Kannampuzha J, Kröger BJ: Articulatory Speech Re-Synthesis: Profiting from natural acoustic speech data. In Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions (LNAI 5641). Edited by: Esposito A, Vich R. Berlin: Springer; 2009:344–355. [Google Scholar]
  51. Levelt WJM, Wheeldon L: Do speakers have access to a mental syllabary?Cognition 1994, 50:239–269. [Google Scholar]
  52. Plunkett K: Lexical segmentation and vocabulary growth in early language acquisition.J Child Lang 1993, 20:43–60. [Google Scholar]
  53. Hebb DO: The Organization of Behavior. New York: Wiley and Sons; 1949. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.