Open Access
EPJ Nonlinear Biomed Phys
Volume 2, Number 1, December 2014
Article Number 2
Number of page(s) 28
Published online 10 February 2014
  1. Wise RJS, Greene J, Buechel C, Scott SK: Brain regions involved in articulation.Lancet 1999, 353:1057–1061. [Google Scholar]
  2. Riecker A, Mathiak K, Wildgruper D, Erb M, Hertrich I, Grodd W, Ackermann H: fMRI reveals two distinct cerebral networks subserving speech motor control.Neurology 2005, 64:700–706. [Google Scholar]
  3. Hickok G, Poeppel D: The cortical organization of speech processing.Nat Rev Neurosci 2007, 8:393–402. [Google Scholar]
  4. McClelland JL, Elman JL: The TRACE model of speech perception.Cogn Psychol 1986, 18:1–86. [Google Scholar]
  5. Li P, Farkas I, MacWhinney B: Early lexical development in a self-organizing neural network.Neural Netw 2004, 17:1345–1362. [Google Scholar]
  6. Westermann G, Miranda ER: A new model of sensorimotor coupling in the development of speech.Brain Lang 2004, 89:393–400. [Google Scholar]
  7. Guenther FH: Cortical interaction underlying the production of speech sounds.J Commun Disord 2006, 39:350–365. [Google Scholar]
  8. Garagnani M, Wennekers T, Pulvermüller F: A neuroanatomically grounded Hebbian-learning model of attention-language interactions in the human brain.Eur J Neurosci 2008, 27:492–513. [Google Scholar]
  9. Wennekers T, Garagnani M, Pulvermüller F: Language models based on Hebbian cell assemblies.J Physiol Paris 2006, 100:16–30. [Google Scholar]
  10. Guenther FH, Ghosh SS, Tourville JA: Neural modeling and imaging of the cortical interactions underlying syllable production.Brain Lang 2006, 96:280–301. [Google Scholar]
  11. Guenther FH, Vladusich T: A neural theory of speech acquisition and production.J Neurolinguistics 2012, 25:408–422. [Google Scholar]
  12. Perkell JS: Movement goals and feedback and feedforward control mechanisms in speech production.J Neurolinguistics 2012, 25:382–407. [Google Scholar]
  13. Arbib MA, Erdi P, Szentagothai J: Neural Organization. Cambridge, MA: The MIT Press; 1998. [Google Scholar]
  14. Kuhl PK: Early language acquisition: cracking the speech code.Nat Rev Neurosci 2004, 5:831–843. [Google Scholar]
  15. Gerstner W, Kistler W: Spiking Neuron Models. Cambridge, UK: Cambridge University Press; 2002. [Google Scholar]
  16. Kasabov N: To spike or not to spike: A probabilistic spiking neuron model.Neural Netw 2010, 23:16–19. [Google Scholar]
  17. Oberauer K, Lewandowsky S: Modeling working memory: a computational implementation of the Time-Based Resource-Sharing theory.Psychon Bull Rev 2011, 18:10–45. [Google Scholar]
  18. Bednar JA, Kelkar A, Miikkulainen R: Scaling self-organizing maps to model large cortical networks.Neuroinformatics 2004, 2:275–301. [Google Scholar]
  19. Kohonen T: The self-organizing map.Proc IEEE 1990, 78:1464–1480. [Google Scholar]
  20. Kohonen T: Things you haven’t heard about the self-organizing map. In Proceedings of IEEE International Conference on Neural Networks. USA: ICNN; 1993:1147–1156. [Google Scholar]
  21. Kohonen T: Self-Organizing Maps. 3rd edition. Berlin: Springer; 2001. [Google Scholar]
  22. Kröger BJ, Birkholz P, Kannampuzha J, Kaufmann E, Neuschaefer-Rube C: Towards the acquisition of a sensorimotor vocal tract action repository within a neural model of speech processing. In Analysis of Verbal and Nonverbal Communication and Enactment: The Processing Issues (LNCS 6800). Edited by: Esposito A, Vinciarelli A, Vicsi K, Pelachaud C, Nijholt A. Berlin, Germany: Springer; 2011:287–293. [Google Scholar]
  23. Kröger BJ, Kopp S, Lowit A: A model for production, perception, and acquisition of actions in face-to-face communication.Cogn Process 2010, 11:187–205. [Google Scholar]
  24. Kröger BJ, Birkholz P, Kannampuzha J, Eckers C, Kaufmann E, Neuschaefer-Rube C: Neurobiological interpretation of a quantitative target approximation model for speech actions. In Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2011. Edited by: Kröger BJ, Birkholz P. Dresden, Germany: TUDpress; 2011:184–194. [Google Scholar]
  25. Kröger BJ, Birkholz P: A gesture-based concept for speech movement control in articulatory speech synthesis. In Verbal and Nonverbal Communication Behaviours (LNAI 4775). Edited by: Esposito A, Faundez-Zanuy M, Keller E, Marinaro M. Berlin: Springer; 2007:174–189. [Google Scholar]
  26. Birkholz P, Jackel D, Kröger BJ: Construction and control of a three-dimensional vocal tract model. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. USA: ICASSP; 2006:873–876. [Google Scholar]
  27. Birkholz P, Jackel D, Kröger BJ: Simulation of losses due to turbulence in the time-varying vocal system.IEEE Transactions on Audio, Speech, and Language Processing 2007, 15:1218–1225. [Google Scholar]
  28. Levelt WJM, Roelofs A, Meyer A: A theory of lexical access in speech production.Behav Brain Sci 1999, 22:1–75. [Google Scholar]
  29. Elman JL: An alternative view of the mental lexicon.Trends Cogn Sci 2004, 8:301–306. [Google Scholar]
  30. Cisek P: Neural representations of motor plans, desired trajectories and controlled objects.Cogn Process 2005, 6:15–24. [Google Scholar]
  31. Saltzman E, Munhall KG: A dynamical approach to gestural patterning in speech production.Ecol Psychol 1989, 1:333–382. [Google Scholar]
  32. Kröger BJ: A gestural production model and its application to reduction in German.Phonetica 1993, 50:213–233. [Google Scholar]
  33. Kröger BJ, Schröder G, Opgen-Rhein C: A gesture-based dynamic model describing articulatory movement data.J Acoust Soc Am 1995, 98:1878–1889. [Google Scholar]
  34. Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF: Reconstructing speech from human auditory cortex.PLoS Biol 2012, 10:e1001251. doi:10.1371/journal.pbio.1001251 [Google Scholar]
  35. Golfinopoulos E, Tourville JA, Guenther FH: The integration of large-scale neural network modeling and functional brain imaging in speech motor control.Neuroimage 2010, 52:862–874. [Google Scholar]
  36. Kröger BJ, Birkholz P, Lowit A: Phonemic, sensory, and motor representations in an action-based neurocomputational model of speech production (ACT). In Speech Motor Control: New developments in basic and applied research. Edited by: Maassen B, Van Lieshout P. New York: Oxford: University Press; 2010:23–36. [Google Scholar]
  37. Kröger BJ, Birkholz P, Kannampuzha J, Neuschaefer-Rube C: Modeling sensory-to-motor mappings using neural nets and a 3D articulatory speech synthesizer. In Proceedings of the 9th International Conference on Spoken Language Processing. USA: ICSLP & Interspeech 2006; 2006:565–568. [Google Scholar]
  38. Li P, Zhao X, Mac Whinney B: Dynamic self-organization and early lexical development in children.Cognit Sci 2007, 31:581–612. [Google Scholar]
  39. Meltzoff AN, Moore MK: Explaining facial imitation: a theoretical model.Early Development and Parenting 1997, 6:179–192. [Google Scholar]
  40. Knapp ML, Hall JA: Nonverbal Communication in Human Interaction. 7th edition. Wadsworth, USA: Cengage Learning; 2010. [Google Scholar]
  41. Tomasello M: Origins of Human Communication. Cambridge, MA: The MIT Press; 2008. [Google Scholar]
  42. Kröger BJ, Birkholz P, Neuschaefer-Rube C: Towards an articulation-based developmental robotics approach for word processing in face-to-face communication.PALADYN Journal of Behavioral Robotics 2011, 2:82–93. [Google Scholar]
  43. Johnson K: Speaker normalization in speech perception. In The Handbook of Speech Perception. Edited by: Pisoni DB, Remez RE. Oxford, UK: Blackwell; 2008:ch15. [Google Scholar]
  44. Kröger BJ, Kannampuzha J, Neuschaefer-Rube C: Towards a neurocomputational model of speech production and perception.Speech Comm 2009, 51:793–809. [Google Scholar]
  45. Oller DK, Eilers RE: The role of audition in infant babbling.Child Dev 1988, 59:441–449. [Google Scholar]
  46. De Boysson-Bardies B, Sagart L, Durand C: Discernible differences in the babbling of infants according to target language.J Child Lang 1984, 11:1–15. [Google Scholar]
  47. Kröger BJ, Kannampuzha J, Lowit A, Neuschaefer-Rube C: Phonetotopy within a neurocomputational model of speech production and speech acquisition. In Some Aspects of Speech and the Brain. Edited by: Fuchs S, Loevenbruck H, Pape D, Perrier P. Berlin: Peter Lang; 2009:59–90. [Google Scholar]
  48. Kröger BJ, Miller N, Lowit A, Neuschaefer-Rube C: Defective neural motor speech mappings as a source for apraxia of speech: Evidence from a quantitative neural model of speech processing. In Assessment of Motor Speech Disorders. Edited by: Lowit A, Kent R. San Diego, CA: Plural Publishing; 2011:325–346. [Google Scholar]
  49. Pierrehumbert JB: Exemplar dynamics, word frequency, lenition and contrast. In Frequency Effects and Emergent Grammar. Edited by: Bybee J, Hopper P. Amsterdam: John Benjamins; 2001:137–158. [Google Scholar]
  50. Bauer D, Kannampuzha J, Kröger BJ: Articulatory Speech Re-Synthesis: Profiting from natural acoustic speech data. In Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions (LNAI 5641). Edited by: Esposito A, Vich R. Berlin: Springer; 2009:344–355. [Google Scholar]
  51. Levelt WJM, Wheeldon L: Do speakers have access to a mental syllabary?Cognition 1994, 50:239–269. [Google Scholar]
  52. Plunkett K: Lexical segmentation and vocabulary growth in early language acquisition.J Child Lang 1993, 20:43–60. [Google Scholar]
  53. Hebb DO: The Organization of Behavior. New York: Wiley and Sons; 1949. [Google Scholar]