Open Access
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 5
Number of page(s) 8
Published online 23 May 2015
  1. Hameroff S. The brain is both neurocomputer and quantum computer. Cogn Sci. 2007;31:1035–45. [Google Scholar]
  2. Tegmark M. The importance of quantum decoherence in brain processes. Physical Rev E. 2000;61:4194–206. [Google Scholar]
  3. Hameroff S. Ultimate computing-biomolecular consciousness and nanotechnology. North Holland: Elsevier; 1987. [Google Scholar]
  4. Saha AA, Craddock TJA, Tuszynski JA. An investigation of stochastic resonance in tubulin dimers. Biosystems. 2012;107(2):81–7. [Google Scholar]
  5. Sahu S, Ghosh S, Ghosh B, Aswani K, Hirata K, Fujita D, et al. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens Bioelectron. 2013;47:141–8. [Google Scholar]
  6. Sahu S, Ghosh S, Hirata K, Fujita D, Bandyopadhyay A. Multi-level memory-switching properties of a single brain microtubule. Appl Phys Lett. 2013;102(123701):1–4. [Google Scholar]
  7. Hameroff S, Penrose R. Consciousness in the universe: a review of the ‘Orch OR’ theory. Physics Life Rev. 2014;11:39–78. [Google Scholar]
  8. Craddock TJA, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation. PLoS Comput Biol. 2012;8(3):1–16. e1002421. [Google Scholar]
  9. Ayoub AT, Craddock TJA, Tuszynski J. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers quantum theory of atoms in molecules. Biophys J. 2014;2:740–50. [Google Scholar]
  10. Dotta BT, Murugan NJ, Karbowski LM, Lafrenie RM, Persinger MA: Shifting wavelength of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic’s theory of resonant recognition model for macromolecules. Naturwissenschaften 2014; 101(2) doi:10.1007/s00114-013-1133-3. [Google Scholar]
  11. Sahu S, Ghosh S, Fujita D, Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Scientific Reports 2014; 4: doi:10.1038/srep07303. [Google Scholar]
  12. Cosic I. Macromolecular bioactivity: is it resonant interaction between macromolecules?-theory and applications. IEEE Trans Biomedical Engineer. 1994;41:1101–14. [Google Scholar]
  13. Cosic I: The Resonant Recognition Model of Macromolecular Bioactivity: Theory and Applications. BirkhauserVerlag 1997. [Google Scholar]
  14. Cosic I. Virtual spectroscopy for Fun and profit. Biotechnology. 1995;13:236–8. [Google Scholar]
  15. Cosic I, Pirogova E:Bioactive Peptide Design using the Resonant Recognition Model. Nonlinear Biomedical Physics 2007; 1(7): doi:10.1186/1753-4631-1-7. [Google Scholar]
  16. Cosic I, Vojisavljevic V, Pavlovic M. The relationship of the resonant recognition model to effects of Low-intensity light on cell growth. Int J Radiat Biol. 1989;56(2):179–91. [Google Scholar]
  17. Cosic I, Lazar K, Cosic D. Prediction of Tubulin resonant frequencies using the Resonant Recognition Model (RRM). IEEE Trans. on NanoBioscience 2014; 12: doi:10.1109/TNB.2014.2365851. [Google Scholar]
  18. Pirogova E, Vojisavljevic V, Istivan T, Coloe P, Cosic I. Review study: influence of electromagnetic radiation on enzyme activity and effects of synthetic peptides on cell trans- formation. MD-Medical Data. 2010;2(4):317–24. [Google Scholar]
  19. Vojisavljevic V, Pirogova E, Cosic I. The effect of electromagnetic radiation (550 nm-850nm) on I-lactate dehydrogenase kinetics. Int J Radiat Biol. 2007;83(4):221–30. [Google Scholar]
  20. Ciblis P, Cosic I. The possibility of soliton/exciton transfer in proteins. J Theor Biol. 1997;184:331–8. [Google Scholar]
  21. Davydov AS. Excitons and solitons in molecular systems. Int Rev Cytol. 1987;106:183–225. [Google Scholar]
  22. Davydov AS. Influence of electron–phonon interaction on the motion of an electron in a One-dimensional molecular system. Translated Teoreticheskaya i Matematicheskaya Fizika. 1979;40(3):408–21. [Google Scholar]
  23. Hyman JM, McLaughlin DW, Scott AC: On Davydov’s Alpha-Helix Solitons, Long-Time Prediction in Dynamics. John Wiley & sons 1983, 367–394. [Google Scholar]
  24. Sinkala Z. Soliton/exciton transport in proteins. J Theor Biol. 2006;241:919–27. [Google Scholar]
  25. Pang XF: Theory of Bio-Energy Transport in Protein Molecules and its Experimental Evidences as well as Applications. Higher Education Press and Springer-Verlag 2007. [Google Scholar]
  26. Yomosa S. The exciton in protein. J Phys Soc Jpn. 1963;18(10):1494. [Google Scholar]
  27. Ichinose S. Soliton excitations in alpha-helical protein structures. Chaos, Solitons Fractals. 1991;1(6):501–9. [Google Scholar]
  28. Cosic I, Lazar K, Cosic D. Cellular ageing- telomere, telomerase and progerin analysed using resonant recognation model. MD-Medical Data. 2014;6(3):205–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.