Open Access
EPJ Nonlinear Biomed Phys
Volume 3, Number 1, December 2015
Article Number 5
Number of page(s) 8
Published online 23 May 2015
  1. Hameroff S. The brain is both neurocomputer and quantum computer. Cogn Sci. 2007;31:1035–45. [Google Scholar]
  2. Tegmark M. The importance of quantum decoherence in brain processes. Physical Rev E. 2000;61:4194–206. [Google Scholar]
  3. Hameroff S. Ultimate computing-biomolecular consciousness and nanotechnology. North Holland: Elsevier; 1987. [Google Scholar]
  4. Saha AA, Craddock TJA, Tuszynski JA. An investigation of stochastic resonance in tubulin dimers. Biosystems. 2012;107(2):81–7. [Google Scholar]
  5. Sahu S, Ghosh S, Ghosh B, Aswani K, Hirata K, Fujita D, et al. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens Bioelectron. 2013;47:141–8. [Google Scholar]
  6. Sahu S, Ghosh S, Hirata K, Fujita D, Bandyopadhyay A. Multi-level memory-switching properties of a single brain microtubule. Appl Phys Lett. 2013;102(123701):1–4. [Google Scholar]
  7. Hameroff S, Penrose R. Consciousness in the universe: a review of the ‘Orch OR’ theory. Physics Life Rev. 2014;11:39–78. [Google Scholar]
  8. Craddock TJA, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation. PLoS Comput Biol. 2012;8(3):1–16. e1002421. [Google Scholar]
  9. Ayoub AT, Craddock TJA, Tuszynski J. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers quantum theory of atoms in molecules. Biophys J. 2014;2:740–50. [Google Scholar]
  10. Dotta BT, Murugan NJ, Karbowski LM, Lafrenie RM, Persinger MA: Shifting wavelength of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic’s theory of resonant recognition model for macromolecules. Naturwissenschaften 2014; 101(2) doi:10.1007/s00114-013-1133-3. [Google Scholar]
  11. Sahu S, Ghosh S, Fujita D, Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Scientific Reports 2014; 4: doi:10.1038/srep07303. [Google Scholar]
  12. Cosic I. Macromolecular bioactivity: is it resonant interaction between macromolecules?-theory and applications. IEEE Trans Biomedical Engineer. 1994;41:1101–14. [Google Scholar]
  13. Cosic I: The Resonant Recognition Model of Macromolecular Bioactivity: Theory and Applications. BirkhauserVerlag 1997. [Google Scholar]
  14. Cosic I. Virtual spectroscopy for Fun and profit. Biotechnology. 1995;13:236–8. [Google Scholar]
  15. Cosic I, Pirogova E:Bioactive Peptide Design using the Resonant Recognition Model. Nonlinear Biomedical Physics 2007; 1(7): doi:10.1186/1753-4631-1-7. [Google Scholar]
  16. Cosic I, Vojisavljevic V, Pavlovic M. The relationship of the resonant recognition model to effects of Low-intensity light on cell growth. Int J Radiat Biol. 1989;56(2):179–91. [Google Scholar]
  17. Cosic I, Lazar K, Cosic D. Prediction of Tubulin resonant frequencies using the Resonant Recognition Model (RRM). IEEE Trans. on NanoBioscience 2014; 12: doi:10.1109/TNB.2014.2365851. [Google Scholar]
  18. Pirogova E, Vojisavljevic V, Istivan T, Coloe P, Cosic I. Review study: influence of electromagnetic radiation on enzyme activity and effects of synthetic peptides on cell trans- formation. MD-Medical Data. 2010;2(4):317–24. [Google Scholar]
  19. Vojisavljevic V, Pirogova E, Cosic I. The effect of electromagnetic radiation (550 nm-850nm) on I-lactate dehydrogenase kinetics. Int J Radiat Biol. 2007;83(4):221–30. [Google Scholar]
  20. Ciblis P, Cosic I. The possibility of soliton/exciton transfer in proteins. J Theor Biol. 1997;184:331–8. [Google Scholar]
  21. Davydov AS. Excitons and solitons in molecular systems. Int Rev Cytol. 1987;106:183–225. [Google Scholar]
  22. Davydov AS. Influence of electron–phonon interaction on the motion of an electron in a One-dimensional molecular system. Translated Teoreticheskaya i Matematicheskaya Fizika. 1979;40(3):408–21. [Google Scholar]
  23. Hyman JM, McLaughlin DW, Scott AC: On Davydov’s Alpha-Helix Solitons, Long-Time Prediction in Dynamics. John Wiley & sons 1983, 367–394. [Google Scholar]
  24. Sinkala Z. Soliton/exciton transport in proteins. J Theor Biol. 2006;241:919–27. [Google Scholar]
  25. Pang XF: Theory of Bio-Energy Transport in Protein Molecules and its Experimental Evidences as well as Applications. Higher Education Press and Springer-Verlag 2007. [Google Scholar]
  26. Yomosa S. The exciton in protein. J Phys Soc Jpn. 1963;18(10):1494. [Google Scholar]
  27. Ichinose S. Soliton excitations in alpha-helical protein structures. Chaos, Solitons Fractals. 1991;1(6):501–9. [Google Scholar]
  28. Cosic I, Lazar K, Cosic D. Cellular ageing- telomere, telomerase and progerin analysed using resonant recognation model. MD-Medical Data. 2014;6(3):205–9. [Google Scholar]